Активный и пассивный транспорт через мембрану

Что такое активная диффузия

Активная диффузия относится к перемещению молекул или ионов из области более низкой концентрации в более высокую концентрацию с помощью вспомогательных белков-переносчиков в клеточной мембране, используя клеточную энергию. Клетки накапливают глюкозу, аминокислоты и ионы посредством активной диффузии. Первичная активная диффузия и вторичная активная диффузия являются двумя типами активных механизмов диффузии, используемых клетками.

Первичная активная диффузия

Первичная активная диффузия относится к транспорту молекул против градиента концентрации путем использования клеточной энергии в форме АТФ. Следовательно, первичный активный транспорт использует молекулы белка-носителя, приводимые в действие АТФ. Первичный активный транспорт наиболее очевиден в натриево-калиевом насосе (Na + / K + ATPase), который поддерживает потенциал покоя клетки. Энергия, выделяемая при гидролизе АТФ, используется для накачки трех ионов натрия из клетки и двух ионов калия в клетку. Здесь ионы натрия транспортируются от более низкой концентрации 10 мМ до более высокой концентрации 145 мМ. Ионы калия переносятся из концентрации 140 мМ внутри клетки до концентрации 5 мМ внеклеточной жидкости. Действие натриево-калиевой помпы показано на Рисунок 1.

Рисунок 1: натриево-калиевый насос

Протонный / калиевый насос (H + / K + ATPase) находится в слизистой оболочке желудка, поддерживая кислую среду внутри желудка. Омепразол является ингибитором протонно-калиевой помпы, снижая кислотный рефлюкс в желудке. Как окислительное фосфорилирование, так и фотофосфорилирование цепи переноса электронов также используют первичный активный транспорт для создания восстановительной способности.

Вторичная активная диффузия

Вторичная активная диффузия относится к переносу молекул против градиента концентрации за счет энергии, выделяющейся из электрохимического градиента. Здесь трансмембранные белки состоят из канальных белков (порообразующих белков). При вторичном активном транспорте наблюдается одновременное движение другого вещества против градиента концентрации. Следовательно, канальные белки, вовлеченные во вторичную активную диффузию, могут быть идентифицированы как котранспортеры. Два типа котранспортеров — это антипортеры и сторонники. Действие котранспортеров показано в фигура 2.

Рисунок 2: Котранспортеры

Конкретные ионы и растворенные вещества транспортируются антипортами в противоположных направлениях. Натриево-кальциевый обменник, который позволяет восстановить концентрацию ионов кальция в кардиомиоците после потенциала действия, является наиболее распространенным примером антипортеров. Ионы транспортируются через градиент концентрации, в то время как растворенное вещество транспортируется против градиента концентрации сторонниками. Здесь обе молекулы транспортируются в одном направлении через клеточную мембрану. SGLT2 является симпортером, который транспортирует глюкозу в клетку вместе с ионами натрия.

Общие сведения

Одним из великих чудес клеточной мембраны является ее способность регулировать концентрацию веществ внутри клетки. Эти вещества включают ионы, такие как Ca ++ , Na + , K + и Cl — ; питательные вещества, включая сахара, жирные кислоты и аминокислоты; и отходы, особенно углекислый газ (СО 2 ), который должен покинуть клетку.

Структура липидного бислоя мембраны обеспечивает первый уровень контроля. Фосфолипиды плотно упакованы вместе, а мембрана имеет гидрофобную внутреннюю часть. Эта структура делает мембрану избирательно проницаемой. Мембрана с селективной проницаемостьюпозволяет только веществам, отвечающим определенным критериям, проходить через него без посторонней помощи. В случае клеточной мембраны только относительно небольшие неполярные материалы могут проходить через липидный бислой (помните, что липидные хвосты мембраны неполярные). Некоторыми примерами этого являются другие липиды, газы кислорода и углекислого газа и спирт. Однако водорастворимые материалы, такие как глюкоза, аминокислоты и электролиты, нуждаются в некоторой помощи для прохождения через мембрану, поскольку они отталкиваются гидрофобными хвостами фосфолипидного бислоя. Все вещества, которые проходят через мембрану, делают это одним из двух общих методов, которые классифицируются в зависимости от того, требуется ли энергия. Пассивный транспорт — это движение веществ через мембрану без затрат клеточной энергии. По сравнению,Активный транспорт — это движение веществ через мембрану с использованием энергии аденозинтрифосфата (АТФ).

Облегченная диффузия

Облегченная диффузия – перенос веществ через цитоплазматическую мембрану по градиенту их концентрации с участием пермеаз (транслоказ) – специфических мембранных белков, способствующих прохождению веществ через цитоплазматическую мембрану.

Пермеаза фиксирует на себе молекулу переносимого вещества, вместе с ней преодолевает цитоплазматичекую мембрану. После этого комплекс «вещество-пермеаза» диссоциирует. Освободившаяся пермеаза, диффундирует к наружной поверхности, присоединяет новую молекулу вещества и транспортирует ее внутрь клетки.

Облегченная диффузия не требует расхода энергии, если наружная концентрация вещества выше внутренней, поскольку в таком случае вещество перемещается «вниз» по химическому градиенту. Скорость процесса зависит от концентрации вещества в наружном растворе. Предполагается, что выход продуктов обмена веществ из микробной клетки может также происходит по методу облегченной диффузии с помощью переносчиков.

Активный транспорт

Здесь для переноса вещества через мембрану необходимо приложить энергию. Но зачем, а главное почему? Потому что такой транспорт идет против градиента концентрации, а без прикладывания энергии молекулу или ион просто не вытолкнуть. Разделяется на два варианта: первично-активный транспорт и вторично-активный транспорт, отличие между ними поймете чуть ниже.

Первично-активный транспорт

Здесь для того, чтобы перенести молекулы/ионы вещества на другую сторону мембраны используется энергия молекул АТФ. Классический вариант — натрий-калиевый насос. Этот насос представляет из себя белок, а именно фермент — АТФазу (помните, что «не все белки — ферменты, но все ферменты — белки» — десятая заповедь от кафедры биохимии).  Занимается тем, что переносит ионы натрия из клетки, а ионы калия внутрь клетки. То есть работает против градиента концентрации, ведь натрия очень много вне клетки, а калия наоборот мало.

У насоса есть участки связывания — два для калия и три для натрия. Состоит из двух субъединиц — альфа и бета, альфа это и есть переносчик, а бета похоже якорит его в мембране. На один цикл: переноса трех ионов натрия из клетки и двух ионов калия внутрь клетки, требуется одна молекула АТФ. Как видим, этот насос создает разницу потенциалов, так как в обмен на три заряженных иона внутрь клетки поступает только два — этому пареньку мы обязаны за отрицательный заряд внутри клетки. Действует такой насос во всех клетках, он не дает клетке лопнуть из-за избытка натрия (вспоминаем про воду).

Натрий-калиевая АТФаза

Кроме такого насоса есть еще несколько — Ca++ и H+ — АТФазы. Избыток кальция вредит клетке, так как он может запустить апоптоз. Водородный насос действует в париетальных клетках желудка и дистальном отделе канальца нефрона — в первом случае он создает кислую среду в желудке для функционирования пепсина. Да и вообще, из внешней среды поступает много всякой заразы, которой неприятно встречаться с кислотой. Во втором случае насос перемещает ионы водорода в просвет канальца. Полезная штука, а то прикинь — позанимался спортом и умер от ацидоза, не круто.

Вторично-активный транспорт.  

Тут одна молекула идет по градиенту концентрации и энергия, которая создается ей, используется для переноса другой молекулы. Представляете, сколько всего ионов натрия во внеклеточной жидкости? Вот и я не представляю, но очень много, а в клетке же наоборот его очень мало. Такая разница создает просто огромную энергию, которая идет на работу белка переносчика. Этот белок переносчик, как вы уже поняли — интегральный белок и имеет два участка связывания. Эти участки могут находиться на одной стороне белка или на разных. Поэтому такой транспорт можно разделить на два варианта:

1) Молекула, которая идет против градиента концентрации, переносится в одну сторону с молекулой, которая идет по градиенту концентрации. Это называется котранспорт (или симпорт). Так переносятся молекулы глюкозы и аминокислот из кишечника и канальцев нефрона. Натрий идет по градиенту концентрации внутрь клетки и захватывает с собой глюкозу или аминокислоты. Тут ты можешь сказать : «Чет странно, ведь в кишке много глюкозы после еды, почему она идет против градиента?». И да, это верно, в кишечнике много глюкозы. Но клеток очень много, а глюкоза растянута по всей поверхности кишки. Вот и получается, что в кишке ее много, но возле каждой клетки маловато. Такая же тема с аминокислотами.

Симпорт или котрнаспорт

2) Молекула идет против градиента концентрации, но не в одну сторону с переносимым по градиенту концентрации веществом — контртранспорт (или антипорт). Так происходит транспорт ионов водорода в проксимальных канальцах нефрона: водород попадает в просвет канальца, а натрий внутрь клетки. 

Контртранспорт или антипорт

Заметили кое-что? Клетка всегда чего-то боится: потерять или перебрать. Не всосать глюкозу и аминокислоты в кишечнике, либо смыть их в унитаз. И здесь она работает не только на свое благо, а на благо всего организма. Ведь ей не очень и нужна эта глюкоза, в ней ее достаточно, но она заботится не только о себе. А говорят, что коммунизм не построить , а он уже существует в организме каждого из нас. Ну это так, просто к слову пришлось… Перебрать же она боится, потому что из-за этого погибнет — поэтому натрий-калиевый насос работает постоянно, как и кальциевый.

Ну что сведем все это опять в нашу табличку?

Если не очень хорошо видно, то в конце есть файл со всеми схемами. Извиняйте.

Все что мы разбирали до этого относится к небольшим по размерам молекулам, а что делать с большими? Для этого есть две легенды, о которых ниже.

Активный транспорт веществ через мембрану клеток

Для всех способов транспортировки, описанных выше, клетка не расходует энергию. Мембранные белки, которые помогают в пассивном транспорте веществ, делают это без использования АТФ. Во время активного транспорта АТФ требуется для перемещения вещества через мембрану, часто с помощью белковых носителей, и обычно против градиента концентрации.

Один из наиболее распространенных видов активного транспорта включает белки, которые служат насосами. Слово «насос», вероятно, вызывает мысли об использовании энергии для накачки шины велосипеда или баскетбола. Точно так же энергия от АТФ требуется для того, чтобы эти мембранные белки транспортировали вещества — молекулы или ионы — через мембрану, обычно против их градиентов концентрации (от области низкой концентрации до области высокой концентрации).

Натрий-калиевый насос, который также называют Na + / K + АТФазы, транспортирует натрий из клетки , в то время как перемещение калия в клетку. Насос Na + / K + является важным ионным насосом, обнаруженным в мембранах многих типов клеток. Эти насосы особенно распространены в нервных клетках, которые постоянно откачивают ионы натрия и вытягивают ионы калия для поддержания электрического градиента через их клеточные мембраны. Электрический градиентразница в электрическом заряде в пространстве Например, в случае нервных клеток электрический градиент существует между внутренней и внешней частью клетки, причем внутренняя часть заряжена отрицательно (около -70 мВ) относительно внешней стороны. Отрицательный электрический градиент поддерживается, потому что каждый насос Na + / K + выводит три иона Na + из клетки и два иона K + в клетку для каждой используемой молекулы АТФ.

Натриево-калиевый насос. Натриево-калиевая помпа обнаружена во многих клеточных (плазменных) мембранах. Приведенный в действие ATP, насос перемещает ионы натрия и калия в противоположных направлениях, каждый против его градиента концентрации. За один цикл работы насоса три иона натрия выдавливаются, а два иона калия импортируются в клетку.

Этот процесс настолько важен для нервных клеток, что на него приходится большая часть их использования АТФ. Активные транспортные насосы могут также работать вместе с другими активными или пассивными транспортными системами для перемещения веществ через мембрану. Например, натриево-калиевый насос поддерживает высокую концентрацию ионов натрия вне клетки. Поэтому, если клетке нужны ионы натрия, все, что нужно сделать, это открыть пассивный натриевый канал, поскольку градиент концентрации ионов натрия заставит их диффундировать в клетку. Таким образом, действие активного транспортного насоса (натриево-калиевого насоса) обеспечивает пассивный транспорт ионов натрия путем создания градиента концентрации. Когда активный транспорт обеспечивает транспорт другого вещества таким образом, это называется вторичным активным транспортом.

Симпортеры — вторичные активные транспортеры, которые перемещают два вещества в одном направлении. Например, натрий-глюкозный симпортер использует ионы натрия, чтобы «втянуть» молекулы глюкозы в клетку. Поскольку клетки накапливают глюкозу для получения энергии, концентрация глюкозы в клетке обычно выше, чем снаружи. Однако благодаря действию натриево-калиевого насоса ионы натрия легко диффундируют в клетку, когда симпортер открыт. Поток ионов натрия через симпортер обеспечивает энергию, которая позволяет глюкозе проходить через симпортер в клетку, против ее градиента концентрации.

И наоборот, антипортеры — это вторичные активные транспортные системы, которые транспортируют вещества в противоположных направлениях. Например, антипортер ионов натрия-водорода использует энергию внутреннего потока ионов натрия для перемещения ионов водорода (H +) из клетки. Натриево-водородный антипортер используется для поддержания рН внутри клетки.

Термодинамика

Физиологический процесс может иметь место только в том случае, если он соответствует основным термодинамическим принципам. Мембранный транспорт подчиняется физическим законам, которые определяют его возможности и, следовательно, его биологическую полезность.
Общий принцип термодинамики, который регулирует перенос веществ через мембраны и другие поверхности, заключается в том, что обмен свободной энергии Δ G для переноса моля вещества с концентрацией C 1 из одного отсека в другой отсек, где он присутствует. в C 2 :

Δграммзнак равнорТбревно⁡C2C1{\ displaystyle \ Delta G = RT \ log {\ frac {C_ {2}} {C_ {1}}}}

Когда C 2 меньше, чем C 1 , Δ G отрицательна, и процесс термодинамически благоприятен. Поскольку энергия передается из одного отсека в другой, за исключением случаев, когда вмешиваются другие факторы, равновесие будет достигнуто там, где C 2 = C 1 , и где Δ G  = 0. Однако есть три обстоятельства, при которых это равновесие не будет достигнуто. , обстоятельства, которые жизненно важны для функционирования биологических мембран in vivo :

  • Макромолекулы на одной стороне мембраны могут предпочтительно связываться с определенным компонентом мембраны или химически модифицировать его. Таким образом, хотя концентрация растворенного вещества может фактически быть разной на обеих сторонах мембраны, доступность растворенного вещества снижается в одном из отсеков до такой степени, что для практических целей не существует градиента для движения транспорта.
  • Мембранный электрический потенциал может существовать , которые могут влиять на распределение ионов. Например, для переноса ионов снаружи внутрь возможно, что:
Δграммзнак равнорТбревно⁡CяпsяdеCотытsяdе+ZFΔп{\ displaystyle \ Delta G = RT \ log {\ frac {C_ {inside}} {C_ {outside}}} + ZF \ Delta P}

Где F — постоянная Фарадея, а Δ P — мембранный потенциал в вольтах . Если Δ P отрицательно, а Z положительно, вклад члена ZFΔP в Δ G будет отрицательным, то есть он будет способствовать переносу катионов изнутри клетки. Таким образом, если поддерживается разность потенциалов, состояние равновесия Δ G  = 0 не будет соответствовать эквимолярной концентрации ионов с обеих сторон мембраны.

Если процесс с отрицательным Δ G связан с процессом транспортировки, то глобальное Δ G будет изменено. Эта ситуация типична для активного транспорта и описывается следующим образом:

Δграммзнак равнорТбревно⁡CвнутриCза пределами+Δграммб{\ displaystyle \ Delta G = RT \ log {\ frac {C _ {\ text {inside}}} {C _ {\ text {outside}}}} + \ Delta G ^ {b}}

Где Δ G b соответствует благоприятной термодинамической реакции, такой как гидролиз АТФ или совместный транспорт соединения, которое перемещается в направлении его градиента.

Транспорт через несколько слоев клеток

Буквально пару слов. Разберем на примере кишки — там несколько слоев (три, ну ладно — четыре, если с подслизистой). Через все должна пройти глюкоза, но как? Это похоже на эстафету: сначала из кишечника вторично-активным транспортом глюкоза попадает в клетку, потом в следующую клетку уже по облегченной диффузии. Так она доходит до крови, а дальше уже идет по своим делам. Всё!

Хочешь задать вопрос, похвалить или наговорить гадостей? Тогда залетай в телегу. Там ты сможешь предложить новый формат или разбор темы. А если серьёзно, то эти статьи пишутся для вас, поэтому мне важна обратная связь.

Схемы по транспорту Скачать

Экзоцитоз и эндоцитоз

Начнем с экзоцитоза и сделаем это на каком-нибудь примере. Пусть это будут пищеварительные ферменты в поджелудочной железе. Синтезировала значит клетка липазу, но она ведь внутри клетки — это значит проку от нее мало. Нужно ее как-то переместить в проток поджелудочной железы, хорошо было бы использовать белок переносчик. А тут проблемка. Липаза слишком большая — ее не засунуть в белок переносчик. Но ничего — у клетки есть выход.

Все ферменты, белки плазмы, пептидные гормоны и так далее, синтезируются в упаковке — пузырьке (по строению он амфифильный). Оно и правильно, представьте — липаза попадает в цитоплазму клетки и просто переваривает ее. Эти пузырьки направляются к мембране, сливаются с ней и попадают в кровь, межклеточное вещество или проток поджелудочной железы. В общем куда им надо, туда они и попадают.

Экзоцитоз липазы

Теперь эндоцитоз. Все тоже самое только наоборот — это мое лучшее объяснение… Ладно, шутки кончились. На клеточной мембране есть определенный участок с рецепторами — окаймленная ямка. На рецепторах накапливаются макромолекулы, а потом ямка погружается в клетку и охватывает их, образуя пузырек. Этот пузырек направляется к лизосоме, где из него образуются мономеры. Эти мономеры клетка использует по своему усмотрению. Посмотрите картинку и все поймете, базарю.

Эндоцитоз

Таким способом идет фагоцитоз лейкоцитами, а еще так в клетку попадают липопротеиды низкой плотности — это переносчики холестерина и жирных кислот.

Пассивный транспорт

Важнейшим свойством клеточной мембраны является ее избирательная проницаемость, благодаря которой происходит перенос веществ между внеклеточным и внутриклеточным пространством. Транспорт, осуществляемый через плазмалемму, делится на активный и пассивный. Пассивный транспорт осуществляется без потребления энергии АТФ. Перенос происходит по градиенту концентрации вещества.

Пассивный транспорт бывает двух видов:

  • диффузия — частицы растворенного вещества проходят через плазмалемму;
  • осмос — растворитель проходит через плазмалемму.

Пассивный транспорт

Диффузия

Осмос

Диффузия — это тип пассивного транспорта, при котором частицы растворенного вещества перемещаются из места с более высокой концентрацией в место с более низкой концентрацией, то есть вдоль градиента концентрации.

В зависимости от того, несет ли переносимое вещество заряд, различают простую и облегченную диффузию.

Осмос — это тип пассивного транспорта, при котором растворитель проходит через мембрану, чаще всего воду, под действием осмотического градиента. Важными условиями для осмоса являются то, что осмотические концентрации на обеих сторонах мембраны различны и что плазмалемма проницаема для воды.

При осмосе вода проходит из места с более низким уровнем в место с более высокой осмотической концентрацией. Движение воды происходит благодаря специальным каналам, называемым аквапоринами (трансмембранными белками), расположенными на поверхности клеточной мембраны.

Аквапоринов 11 разных видов. Это тетрамеры, состоящие из четырех субъединиц. В центре каждого находится пора, через которую проходят молекулы воды.

Поскольку двойной фосфолипидный слой является сложным барьером, который необходимо преодолеть, только небольшие жирорастворимые вещества (простагландины, стероидные гормоны, эфир) и небольшие неполярные молекулы (кислород, диоксид углерода, азот, оксид азота) легко преодолевают этот барьер посредством простой диффузии.

Транспорт водорастворимых веществ через мембрану осуществляется с помощью транспортных белков — носителей. Процесс называется облегченной диффузией, транспортеры белка, участвующие в этом способе транспорта, состоят из длинной полипептидной цепи, которая многократно проходит через липидный бислой. Таким образом, образуется каналообразная структура, через которую транспортируемое вещество проходит без контакта с мембраной. Носитель также снабжен секцией, с которой он взаимодействует с переносимым веществом.

Предполагается, что он претерпевает конформационные изменения при связывании с транспортируемым веществом

Тоничность определяет влияние раствора на живые клетки. Если определенные клетки погружены в раствор и остаются там в течение некоторого времени, можно наблюдать три типа изменений:Существуют различные формулы и методы, с помощью которых это можно определить. В большинстве случаев это делается путем определения точки замерзания раствора. Когда в растворе находятся растворенные частицы, он замерзает при более низких температурах, и чем выше их концентрация, тем ниже температура замерзания. Осмотичность раствора зависит от его осмоляльности. Если два раствора имеют одинаковую осмоляльность, они являются изоосмотическими, и один раствор обладает более высокой осмоляльностью, чем другой, он является гиперосмотическим, а если он имеет более низкую осмоляльность, он является гипоосмотическим.Осмос зависит от осмоляльности раствора. Осмоляльность — это осмотическая концентрация количества частиц, содержащихся в одном килограмме воды. Единицей измерения является осмол.

  • попадание воды в клетки путем осмоса и увеличения объема клеток (в этом случае клетка находится в гипотоническом растворе);
  • утечка воды из ячеек, уменьшение объема и образование морщин (в этом случае клетка находится в гипертоническом растворе);
  • никаких перемен в клетках не наблюдается.

Последнее изменение называется изотоническим. Изотонические растворы должны отвечать следующим требованиям: иметь осмоляльность, равную осмоляльности клеточного цитозоля, и не иметь доступных веществ, которые могут проникать через плазмалемму путем диффузии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector