Факторы, определяющие силу и скорость сокращения мышц

КРАТКАЯ ХАРАКТЕРИСТИКА МЫШЕЧНЫХ ВОЛОКОН СКЕЛЕТНЫХ МЫШЦ

В прошлый раз мы познакомились с тем, из каких основных компонентов состоят наши скелетные мышцы. Теперь мы познакомимся со структурой скелетных мышц и функцией отдельных ее компонентов.

Итак, начнем с самого главного компонента мышцы — мышечных волокон. В мышце мышечные волокна составляют приблизительно 85%. На долю всех остальных компонентов остается 15%.

Длина мышечного волокна

Долгое время считалось, что длина мышечных волокон может быть очень большой, более 30 см. Однако ученый А.Дж. МакКомас в своей книге «Скелетные мышцы» показал, что длина мышечных волокон составляет приблизительно 12 см. Можно, однако возразить: «А как же длинные мышцы? Ведь их длина иногда составляет более 40 см?». А.Дж. МакКомас считает, что длинные мышцы состоят из участков, называемых компартментами. Длина этих участков как раз и составляет 12 см. Портняжная мышца состоит из четырех компартментов, полусухожильная – из трех, двуглавая бедра – из двух.

Более подробно строение и функции мышц описаны в моих книгах «Гипертрофия скелетных мышц человека» и «Биомеханика мышц«

Длина мышечного волокна зависит от типа мышцы. В перистых мышцах (мышечные волокна прикрепляются под углом к линии, соединяющей начало и конец мышцы) мышечные волокна значительно короче, чем в веретенообразных мышцах (мышечные волокна расположены параллельно линии соединяющей начало и конец мышцы). Так в латеральной широкой мышце бедра, одной из головок четырехглавой мышцы (перистой), длина мышечных волокон составляет 7,2 см.

Площадь поперечного сечения мышечного волокна

Диаметр мышечных волокон варьирует от 20 до 80 мкм (1 мкм – это одна миллионная метра). Существует очень важный показатель, характеризующий мышечное волокно – площадь его поперечного сечения. На основе этого показателя многие ученые судят о гипертрофии мышечного волокна – то есть увеличении его объема. Естественно, площадь поперечного сечения мышечного волокна зависит от целого ряда факторов: типа мышцы, типа мышечного волокна, пола, возраста, уровня тренированности. У не тренирующихся молодых мужчин этот показатель в среднем равен 5500 мкм2, а у женщин – 3500 мкм2.

Энергетика мышечного волокна

Основная функция мышечных волокон – преобразование химической энергии в механическую. В мышечных волокнах выделение энергии происходит в результате реакции гидролиза АТФ (соединения с водой). Универсальным источником энергии в живом организме является молекула аденозинтрифосфата (АТФ), которая при соединении с водой (Н2О) отсоединяет одну фосфатную группу и превращается в аденозиндифосфат (АДФ), при этом выделяется энергия.

АТФ+Н2О → АДФ+Н3РО4 + энергия

Запасы АТФ в мышечных волокнах незначительны (5 моль/кг) и их достаточно для выполнения мышечной работы в течение 1-2 с, поэтому для обеспечения более продолжительной мышечной деятельности должно происходить пополнение запасов АТФ. Образование АТФ в мышечных волокнах непосредственно во время физической работы называется ресинтезом АТФ. Реакция ресинтеза АТФ имеет следующий вид:

АДФ + фосфат + энергия  → АТФ.

Таким образом, при функционировании мышц в них одновременно протекают два процесса: гидролиз АТФ, дающий необходимую энергию для сокращения и расслабления мышц, и ресинтез АТФ, восполняющий потери этого вещества.

Рекомендуемая литература

  1. Ванек Ю. Спортивная анатомия.- М.: Академия, 2008.- 304 с.
  2. Мак-Комас А. Дж. Скелетные мышцы человека. – Киев: Олимпийская литература, 2001.- 407 с. (Текст этой монографии А.Дж. Мак-Комаса ориентирован на подготовленного читателя.)
  3. Самсонова, А.В. Влияние силовой тренировки на параметры, определяющие объем скелетных мышц человека /А.В. Самсонова, И.Э. Барникова //Культура физическая и здоровье, 2013.- № 4 (46).- С. 35-38
  4. Самсонова, А.В. Гипертрофия скелетных мышц человека. – СПб: Кинетика, 2018. – 159 с. (В этом учебном пособии состав скелетных мышц описан подробно, текст ориентирован на неподготовленного читателя).
  5. Ткачук М.Г., Степаник И.А. Анатомия. – М.: Советский спорт, 2010.­ 392 с. (для неподготовленного читателя)

Моль – единица измерения количества вещества. 1 моль равен количеству вещества, в котором содержится NA частиц. NA – постоянная Авогадро. NA = 6,02214179×1023.

Диагностика

Прежде, чем определить, как лечить гиперкинез, необходимо провести точную и достоверную диагностику

При этом обращают внимание на клиническую картину заболевания, оценку психологического и интеллектуального состояния пациента

В диагностике гиперкинезов используются:

  • общий и биохимический анализы крови – диагностируют патологию, возникающую вследствие токсического воздействия;
  • КТ и МРТ головного мозга – выявляют опухоли, различные дегенеративные изменения;
  • электроэнцефалография – определяет активность мозга, диагностирует эпилепсию;
  • исследование мозгового кровотока, УЗДГ сосудов головного мозга и шеи;
  • исследование цереброспинальной жидкости.

Некоторым пациентам назначают консультацию генетика. Она необходима, если есть подозрение о том, что гиперкинезы являются симптомами наследственных заболеваний.

Диагностика гиперкинезов – это длительный процесс, на который понадобится несколько недель. Определение причин патологии позволит лечить гиперкинез более эффективно.

Действительно ли гипертрофия мышц запускается лишь их активацией?

Можно подумать, что активации мышечных волокон при тренировке с отягощениями достаточно для получения механотрансдукции, но лишь активации недостаточно для стимуляции роста мышц. Например, мы провели исследование, в котором у испытуемых каждый день, в течение 21 дня оценивали максимальное произвольное изометрическое и изотоническое (ПМ) усилие, и этого оказалось недостаточно для стимуляции роста мышц (Dankel et al. 2017b). Максимальный характер подобных тестов предполагает, что все двигательные единицы, которые можно активировать, действительно активировались; тем не менее, это не вызвало роста мышц. Следует отметить, когда испытуемые выполняли точно такой же протокол, в дополнение к трём подходам упражнений для противоположной руки, этого оказалось достаточно для стимуляции роста мышц. Совместно эти данные предполагают необходимость для запуска каскада механотрансдукции в каждом волокне не просто активации, но и достаточного количества активированных двигательных единиц с достаточной продолжительностью (достаточное время пребывания под нагрузкой) (Рис. 2). Это может быть связано с недостаточной амплитудой и/или продолжительностью увеличения содержания кальция внутри клетки, поскольку кратковременные/высокоамплитудные кальциевые сигналы активируют путь СаМКII (Chin 2005). Внутриклеточный кальций (Ito et al. 2013) и синтез фосфатидной кислоты (You et al. 2014) также могут ограничить величину роста мышц при столь кратковременных сокращениях мышц, так как эти факторы играют важную роль в начале сигнального пути mTORC1. Вероятно, все факторы, исключающие гипертрофию, связаны со снижением активации сигнального пути mTORC1, поскольку блокирование этого пути отменяет компенсаторную гипертрофию у крыс (Bodine et al. 2001) и значительно уменьшает синтез белка в ответ на упражнения с отягощениями у людей (Gundermann et al. 2014).

Стимула, необходимого для стимуляции роста мышц, по-видимому, нетрудно добиться, так как даже три изометрических сокращения по 10 с в день вызывали измеримую гипертрофию мышц. Мы полагаем, аналогичное количество активных двигательных единиц и равное число активаций каждой двигательной единицы (тот же процент мышечных волокон, сокращаются аналогичное количество раз), недостаточно для стимуляции роста мышц, если эта активация двигательных единиц распределена в течение дня. Другими словами, может ли тридцать изометрических сокращений по 1 с, равномерно распределённые в течение дня, обеспечить результат, аналогичный трем изометрическим сокращениям по 10 с, использованным Ikai and Fukunaga (1970)? Если нет, тогда вероятно нужна не строгая пропорция активированных двигательных единиц и количества их активаций (поскольку они очень похожи в задачах), а достаточное количество активации двигательных единиц определённой продолжительности, необходимой для индуцирования существенных химических изменений, способных вызвать мышечный рост (Рис. 1). Это может быть связано с накоплением фосфатидной кислоты, которая показала решающее значение для механозависимой активации mTORC1 (Hornberger et al. 2006; O’Neil et al. 2009). Сочетание процента стимулированных мышечных волокон и продолжительности стимуляции каждого из них, вероятно, наиболее важные факторы, определяющие гипертрофию мышц, вызванную сокращениями, поскольку в нашей лаборатории показано, что даже максимальные сокращения сгибателей локтя с полной амплитудой движения без внешней нагрузки вызывают гипертрофию мышц, аналогичную упражнениям с отягощениями с высокой нагрузкой (Counts et al. 2016). Несмотря на значительное количество метаболитов, образующихся при длительном нахождении мышечных волокон под нагрузкой, по нашему мнению, роль метаболитов для роста мышц – просто разрешающая и не обязательная.

Механические стимулы

Чтобы разработать программу упражнений для максимального роста мышц, нужно понимать физиологию мышечных волокон. Двигательный нейрон принимает сигнал от центральной нервной системы (ЦНС), в результате чего мышечные волокна, соединённые с ним, сокращаются. Выделяют два основных типа мышечных волокон: тип I (медленносокращающиеся) и тип II (быстросокращающиеся). Волокна типа I относят также к аэробным, вследствие их высоких окислительных способностей, которые дают им возможность сокращаться продолжительное время. Волокна типа II наиболее часто в литературе по физиологии разделяют на два типа IIa и IIb. Волокна типа IIb используют для сокращений богатые энергией фосфаты, чтобы кратковременно генерировать большое усилие, без использования кислорода, что делает их полностью анаэробными. Волокна типа IIa могут получить свойства волокон типа I и типа IIb, в зависимости от применяемого тренировочного стимула (Baechle and Earle, 2008; Zatsiorsky and Kraemer, 2006).

Начальные увеличения в силе от программы тренировок с отягощениями происходит преимущественно за счёт улучшения функции нервов: внешнее сопротивление создаёт стимул, который увеличивает количество активируемых двигательных единиц и их скорость сокращения. Одним из долгосрочных видов адаптации к тренировке с отягощениями является увеличение поперечника мышечных волокон. Когда поперечник увеличивается в размере, большая поверхность волокон позволяет генерировать большее усилие. Мышцы, в которых поперечник отдельных волокон больше, способны проявлять большую силу. Несмотря на общепринятое заблуждение, что поднимание отягощений может приводить к быстрому увеличению размеров мышц, необходимо восемь и более недель, даже при отлично составленной программе, для того, чтобы произошёл существенный рост.

Согласно принципу «всё или ничего», двигательные единицы могут быть активными или неактивными: тем не менее, когда стимул для сокращения достаточный, сокращаются все волокна. Медленносокращающиеся двигательные единицы имеют низкий порог возбуждения и низкую скорость проведения, они лучше всего подходят для продолжительной активности, требующей минимальных усилий, так как содержат волокна типа I.

Быстросокращающиеся двигательные единицы содержат мышечные волокна типа II и имеют высокий порог возбуждения, а также высокую скорость проведения сигналов и лучше подходят для быстрого производства усилия, так как могут производить АТФ быстро, без участия кислорода. Быстросокращающиеся волокна также превосходят в диаметре волокна типа I  и играют более существенную роль в гипертрофии. Рекрутирование и иннервация мышечных волокон типа II требует создания высокой механической и метаболической нагрузки до отказа вовлечённых в подход мышц (Zatsiorsky and Kraemer, 2006).

Красные и белые мышечные волокна

Красные мышечные волокна

Красные мышечные волокна

Медленные волокна называют красными из-за красной гистохимической окраски, обусловленной содержанием в этих волокнах большого количество миоглобина — пигментного белка красного цвета, который занимается тем, что доставляет кислород от капилляров крови вглубь мышечного волокна.

Красные волокна имеют большое количество митохондрий, в которых происходит процесс окисления для получения энергии ST-волокна окружены обширной сетью капилляров, необходимых для доставки большого количества кислорода с кровью.

Медленные мышечные волокна приспособлены к использованию аэробной системы энергообразования: сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма. Такие волокна отлично подходят для продолжительной и не интенсивной работы (стайерские дистанции в плавании, легкий бег и ходьба, занятия с легкими весами в умеренном темпе, аэробика), движений, не требующих значительных усилий, поддержании позы. Красные мышечные волокна включаются в работу при нагрузках в пределах 20-25% от максимальной силы и отличаются превосходной выносливостью.

Красные волокна не подойдут для подъема тяжелого веса, спринтерских дистанций в плавании, так как эти виды нагрузок требуют достаточно быстрого получения и расхода энергии.

Белые мышечные волокна

Белые мышечные волокна

В быстрых волокнах меньше миоглобина, поэтому они выглядят белее.

Для белых мышечных волокон характерна высокая активность фермента АТФазы, следовательно АТФ быстро расщепляется с получением большого количества необходимой для интенсивной работы энергии. Так как FТ-волокна обладают высокой скоростью расхода энергии, они требуют и высокой скорости восстановления молекул АТФ, которую может обеспечить только процесс гликолиза, потому что в отличие от процесса окисления (аэробное энергообразование) он протекает непосредственно в саркоплазме мышечных волокон, и не требует доставки кислорода митохондриям, и доставки энергии от них уже к миофибриллам. Гликолиз ведет к образованию быстро накапливающейся молочной кислоты (лактата), поэтому белые волокна быстро устают, что в конечном итоге останавливает работу мышцы. При аэробном энергообразовании в красных волокнах молочная кислота не образуется, поэтому они способны долго поддерживать умеренное напряжение.

Белые волокна имеют больший диаметр по сравнению с красными, в них также содержится гораздо большее количество миофибрилл и гликогена, но меньше количество митохондрий. В белых волокнах находится и креатинфосфат (КФ), необходимый на начальном этапе высокоинтенсивной работы.

Белые волокна больше всего подходят для совершения быстрых, мощных, но кратковременных (так как они обладают низкой выносливостью) усилий. По сравнению с медленными волокнами, FT-волокна могут в два раза быстрее сокращаться и развивать в 10 раз большую силу. Максимальную силу и скорость человеку позволяют развить именно белые волокна. Работа от 25-30% и выше означает, что в мышцах работают именно FТ-волокна.

В зависимости от способа получения энергии быстросокращающиеся мышечные волокна делят на два типа:

  1. Быстрые гликолитические волокна (FTG-волокна). Эти волокна используют процесс гликолиза для получения энергии, т.е. могут использовать исключительно анаэробную систему энергообразования, которая способствует образованию лактата (молочной кислоты). Соответственно, эти волокна не могут производить энергию аэробным способом с участием кислорода. Быстрые гликолитические волокна обладают максимальной силой и скоростью сокращений. Эти волокна играют первостепенную роль при наборе массы в бодибилдинге и обеспечивают пловцам и бегунам спринтерам максимальную скорость.
  2. Быстрые окислительно-гликолитические волокна (FTO-волокна), иначе промежуточные или переходные быстрые волокна. Эти волокна представляют собой как бы промежуточный тип между быстрыми и медленными мышечными волокнами. FTO-волокна обладают мощной анаэробной системой энергообразования, но они приспособлены также и к выполнению достаточно интенсивной аэробной работы. То есть они могут развивать значительные усилия и развивать высокую скорость сокращения, используя гликолиз в качестве основного источника энергии, и в то же время, при низкой интенсивности сокращения, эти волокна довольно эффективно могут использовать и окисление. Промежуточный тип волокон включается в работу при нагрузке 20-40% от максимума, но когда нагрузка достигает приблизительно 40% организм уже полностью переключается на FTG-волокна.

Разработка программы тренировок для набора мышечной массы

Стандартный протокол для гипертрофии мышц предполагает выполнение 8 – 12 повторений с достаточной интенсивностью, чтобы вызывать отказ к последнему повторению. Короткий или средний по продолжительности отдых между подходами (30 – 120 с) позволяет создать значительный метаболический запрос. Выполнение 3 – 4 подходов в упражнении обеспечивает эффективное механическое напряжение вовлечённых в сокращение мышц. Темп движения должен предусматривать относительно короткую фазу концентрического сокращения (1 – 2 с) и более продолжительную (2 – 6 с) эксцентрическую фазу для обеспечения достаточного механического напряжения. «С точки зрения гипертрофии, эксцентрическое сокращение оказывает большее влияние на развитие мышц. В частности, эксцентрические упражнения связывают с более значительным увеличением синтеза белка» (Schoenfeld, 2010).

Комплексные, многосуставные движения со свободными весами, например, со штангой, гантелями и гирями, включают большое количество разных мышц и могут оказывать значительное метаболическое воздействие при занятиях, особенно в диапазоне повторений от 12 до 20. Регулируемые тренажёры, предусматривающие изолированные или односуставные движения, способны направить воздействие точно на отдельную мышцу. Шенфельд утверждает, что каждый вид отягощения играет свою роль в оптимальном росте мышц: «Свободные веса, вовлекающие большое количество мышц, помогают увеличить плотность мышц, тогда как стабилизация, предоставляемая тренажёрами, позволяет больше нагрузить отдельные мышцы». Программа упражнений, представленная ниже, основана на последних научных исследованиях, связанных с увеличением массы мышц. Метаболические и механические требования при тренировке высокого объёма могут вызывать серьёзные повреждения мышц и рекомендуются только для клиентов с опытом занятий со свободными отягощениями, по крайней мере, один год. Клиентам необходимо начинать с хорошей динамической разминки, включающей различные движения без отягощений и для мышц core, чтобы подготовить мышечную ткань к стрессовому воздействию тренировки высокого объёма. Даже если в занятии предусмотрена нагрузка на одну или две части тела, необходимо выполнять разминку для всего тела, которая может помочь в увеличении расхода калорий и способствует восстановлению мышц, нагруженных в предыдущих занятиях. Начинать тренировку предпочтительно с комплексных движений со свободными весами для включения максимального количества мышц, и в ходе занятия постепенно переходить к использованию тренажёров, оказывающих воздействие на отдельные мышцы.

Последнее упражнение в каждой тренировке необходимо выполнять в тренажёре, применяя подход со снижением веса: после выполнения всех повторений подхода до отказа, вес снижается и с ним также выполняется возможное количество повторений до отказа. Подходы со снижением веса способны оказывать существенный механический и метаболический стресс, а также вызывают значительный дискомфорт, поэтому их следует выполнять в конце занятия.

Каждому клиенту необходима программа, отвечающая его/её нуждам, но аналогичный способ наибольшего увеличения массы мышц. Вы отметите, что в этой программе ограничена кардио-нагрузка. Согласно Шенфельду, «слишком большой расход энергии может уменьшить рост мышц».

Как тренировать быстрые и медленные мышечные волокна

Здесь очень важно понять, что ММВ тренируются после БМВ и никак иначе. Изначально необходимо заняться силовыми упражнениями с критическими весами на рост БМВ, а уж после этого следует прорабатывать ММВ

Поэтому, начинать проработку ММВ только со статических упражнений, не стоит, так как это не принесет должного результата.

Основные принципы тренировки ММВ

Медленные мышечные волокна не отзываются на нагрузку, предназначенную для роста быстрых мышечных волокон. 

Поэтому их тренировка должна включать:

  • Небольшие веса.

  • Медленную скорость выполнения.

  • Количество подходов — 3-4 (10-12 повторений).

  • Минимальный отдых между сетами – 2-3 мин.

При этом полного разгибания суставов быть не должно, чтобы работающая мышца не отдыхала. 

БИОЛОГИЯ Том 2 — руководство по общей биологии — 2004

18.4.7. Медленные и быстрые мышечные волокна

Выделяют два типа скелетных мышечных волокон, каждый из которых имеет свои физиологические особенности. Это медленные (тонические) и быстрые (фазические волокна). Их строение, локализация и общие свойства указаны в табл. 18.3. В некоторых мышцах могут быть только быстрые или только медленные волокна, в других — волокна обоих типов в определенном соотношении.

Таблица 18.3. Строение, локализация и общие свойства быстрых и медленных мышечных волокон

Медленные (тонические) волокна

Быстрые (фазические) волокна

Строение

Много митохондрий

Саркоплазматический ретикулум развит слабо

Красные — из-за присутствия миоглобина и цитохромных пигментов

Содержание гликогена невелико

Тесный контакт волокон с капиллярами для ускорения обмена веществами

Мало митохондрий

Саркоплазматический ретикулум хорошо развит

Белые — миоглобина и цитохромных пигментов мало или нет вовсе

Обилие гликогеновых гранул

Расположение

В глубоких слоях мышц конечностей

Ближе к поверхности

Иннервация

Тонкие нервные волокна (5 мкм в диаметре). На одном мышечном волокне несколько концевых пластинок (это называется мультитерминальной иннервацией). Скорость проведения импульса 2—8 м · с-1

Толстые нервные волокна 10—20 мкм в диаметре.

Обычно на одном мышечном волокне одна концевая пластинка (могут быть две). Скорость проведения 8—40 м · с-1

Возбудимость

Мембрана не обладает электрической возбудимостью. Каждый импульс приводит к высвобождению лишь небольшого количества ацетилхолина. Таким образом, степень деполяризации мембраны зависит от частоты поступления раздражителей

Мембрана обладает электрической возбудимостью

Тип ответа

Медленное градуальное сокращение.

Медленное расслабление (приблизительно в 100 раз медленнее, чем у быстрых волокон)

Быстрое сокращение (в 3 раза быстрее, чем у медленных волокон).

Довольно быстрое утомление

Физиологическая активность

Источник АТФ — аэробное дыхание.

Многие волокна при недостатке 02 продолжают работать за счет анаэробного гликолиза; в этом случае образуется молочная кислота и создается кислородная задолженность.

По мере окисления дыхательного субстрата мобилизуются запасы углеводов или липидов.

Тепло отводится от мышцы по мере его выработки

Устанавливается равновесие между потребностями работающей мышцы и мышцы в покое

Источник АТФ — анаэробные процессы (гликолиз).

Быстро возникает кислородная задолженность.

В качестве дыхательного субстрата интенсивно используется гликоген.

Тепло поглощается волокнами, так как кровеносная система не обеспечивает его быстрого отведения

Мышца некоторое время сокращается и тогда, когда кровеносная система не успевает обеспечить дополнительную доставку кислорода

Функция

Обеспечивают длительное сокращение мышцы; это используется для поддержания позы

Обеспечивают немедленное быстрое сокращение, когда кровеносная система еще только приспосабливается к новому уровню мышечной активности; поэтому очень важны при локомоции

Благодаря волокнам этих двух типов организм способен передвигаться и поддерживать позу. Быстрые волокна позволяют мышце сокращаться с высокой скоростью. В большом количестве эти волокна имеются у хищников; они обеспечивают быстроту реакций при ловле добычи. Вместе с тем потенциальная добыча, чтобы не стать жертвой хищников, тоже должна быть способна к быстрому реагированию. В обоих случаях от подвижности животного будут зависеть его шансы на выживание.

Когда животное находится в покое, оно поддерживает определенную позу с помощью тонических мышечных волокон. Им свойственно более медленное и длительное сокращение, но зато энергетические затраты при этом меньше, чем при сокращении быстрых волокон.

У человека все мышцы тела состоят из волокон обоих типов, но обычно один из них доминирует. Это имеет физиологическое значение, поскольку тонические мышцы способны к медленному и длительному сокращению и их соответственно больше в позных мышцах-разгибателях, тогда как в сгибателях, предназначенных для быстрых реакций, преобладают фазические волокна.

Быстрые мышечные волокна иногда называют белыми: в них относительно мало красного пигмента миоглобина, связывающего кислород. В медленных волокнах его намного больше и их называют красными.

ПредыдущаяСледующая

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector