Что нужно знать о гликогене и его функциях

Содержание:

Влияние на эффективность тренировок

Основным блоком (модулем) клеточной энергии является молекула, называемая аденозинтрифосфатом (АТФ).
Для того, чтобы клетка использовала АТФ, она должна сначала разбить ее на более мелкие молекулы. Затем эти «побочные продукты» синтезируются обратно в АТФ для повторного использования.

во время высокоинтенсивного спринта тело генерирует аденозинтрифосфат в 1000 раз быстрее, чем во время отдыха

  1. Фосфокреатиновая система.
  2. Анаэробная система.
  3. Аэробная система.

Чтобы понять, как гликоген вписывается в эти процессы, необходимо ознакомиться, как эти системы работают.

Фосфокреатиновая система

Фосфокреатин, также известный, как креатинфосфат, является одним из источников энергии в мышечной ткани.
Наши мышцы не могут накапливать очень много фосфокреатина, и поэтому креатинфосфат не может генерировать столько же энергии, как анаэробная и аэробная системы. Преимущество фосфокреатина заключается в том, что он способен генерировать АТФ гораздо быстрее, чем глюкоза или триглицериды.
Для наглядности фосфокреатиновую систему можно представить как электродвигатель. Она не может производить много энергии, но «выбрасывает» ее почти мгновенно.
Вот почему наш организм опирается на креатинфосфат во время коротких, интенсивных нагрузок, которые длятся не больше 10 секунд, как, например, жим штанги лежа на максимальный результат (одноповторный максимум).
Недостатком является то, что фосфокреатиновой системе требуется много времени для «перезарядки», иногда до 5 минут. Именно поэтому прием креатина улучшает работоспособность.
Приблизительно через 10 секунд интенсивных нагрузок фосфокреатиновая система истощается, и организм переключается на анаэробную.

Анаэробная система

Примерно через 10-20 секунд после начала тяжелых нагрузок, для производства АТФ в дело вступает анаэробная энергетическая система.
Свое название получила из-за того,что она работает без присутствия кислорода.
(«Ан-» означает «без» и «аэробный» означает «связанный с кислородом».)
Она позволяет производить энергию значительно быстрее, но не так эффективно, как аэробная система.
Ее можно сравнить с типичным бензиновым двигателем внутреннего сгорания: он может производить приличное количество энергии, но для достижения полной мощности требуется несколько секунд.
Ее также называют «гликолитической системой», потому что большая часть энергии производится из гликогена и глюкозы.
Наш организм использует ее для нагрузок, которые длятся от 20 секунд до 2 минут. Другими словами, всех тех упражнений, которые заставляют мышцы «гореть». Это жжение возникает из-за метаболических побочных продуктов, которые накапливаются в мышечной ткани.
Большинство подходов в диапазоне от 8 до 12 повторений в тренажерном зале обеспечиваются за счет анаэробной системы.

Аэробная система

Также называется «окислительной» или «дыхательной». Включается в работу примерно через 60 — 120 секунд после начала нагрузки.
Она не может производить энергию так же быстро, как первые 2, но способна генерировать ее гораздо дольше и работает намного эффективнее.
Аэробная система сжигает немало мышечного гликогена, когда вы тренируетесь интенсивно.
Ее можно сравнить с дизельным двигателем: может производить много энергии практически бесконечно, но для прогрева требуется некоторое время.

Все три энергетические системы работают постоянно, но вклад каждой из них зависит от интенсивности тренировки.
Чем тяжелее вы тренируетесь, тем быстрее организм нуждается в регенерации АТФ и тем больше он зависит от первых двух систем — фосфокреатиновой и анаэробной.
Аэробная система в основном включается во время длительных тренировок средней интенсивности и после тяжелых тренировок, когда организм восстанавливается.Для чего это важно знать?
Все эти три системы для своей работы в значительной степени полагаются на гликоген.
Когда его уровень иссякает, производительность и эффективность работы значительно снижается. Двигатели начинают разбрызгивать и испарять топливо.
Если вы придерживаетесь высокоуглеводной диеты, снабжая эти двигатели большим количеством топлива, то сможете тренироваться больше и дольше

Потребность организма в гликогене

Истощенные запасы гликогена подлежат восстановлению. Высокий уровень физической активности может привести к полному опустошению запасов в мышцах и печени, а это снижает качество жизни и работоспособность. Долгий срок поддержания безуглеводной диеты сводит показатели гликогена в двух источниках к нулю. Во время интенсивной силовой тренировки мышечные резервы истощаются.

Минимальная доза гликогена в сутки – 100 г, но показатели увеличиваются в случае:

  • напряженной умственной работы;
  • выход из «голодной» диеты;
  • высокоинтенсивной физической нагрузки;

В случае дисфункции печени и недостатков ферментов нужно аккуратно выбирать пищу, богатую гликогеном. Высокое содержание глюкозы в диете подразумевает снижение употребления полисахарида.

Влияние гликогена на вес тела

Как было сказано выше, общее количество запасов полисахарида составляет 400 г. Каждый грамм глюкозы связывает 4 грамма воды, значит, 400 г сложного углевода составляет 2 килограмма водного раствора гликогена. Во время тренировок организм тратит запасы энергии, теряя жидкость в 4 раза больше – это объясняется потоотделение.

Сюда же отнесится результативность экспресс-диет для похудения: безуглеводный рацион питания приводит к интенсивному расходу гликогена, а заодно жидкости. 1 л воды = 1 кг веса. Но вернувшись к рациону с привычным содержанием калорий и углеводов, запасы восстанавливаются вместе с потерянной на диете жидкостью. Это объясняет кратковременность эффекта быстрой потери веса.

Похудеть без негативных последствий для здоровья и возвращения потерянных килограммов поможет правильный подсчет суточной потребности в калориях и физические нагрузки, способствующие расходу гликогена.

Дефицит и излишек — как определить?

Избыток гликогена сопровождается сгущением крови, сбоем работы печени и кишечника, набором лишнего веса.

Дефицит полисахарида приводят к расстройствам психоэмоционального состояния – развивается депрессия, апатия. Снижается концентрация внимания, иммунитет, наблюдается потеря мышечной массы.

Недостаток энергии в организме снижает жизненный тонус, сказывается на качестве и красоте кожи и волос. Пропадает мотивация тренироваться и в принципе выходить из дома. Как только вы заметили подобные симптомы, необходимо позаботиться о восполнении гликогена в организме с помощью читмила или корректировки плана питания.

Какое количество гликогена находится в мышцах

Из 400 г гликогена 280-300 г запасается в мышцах и расходуется во время тренировок. Под воздействием физической нагрузки усталость возникает из-за истощения запасов. В связи с этим за полтора-два часа до начала тренинга рекомендуется употребить продукты с большим содержанием углеводов с целью пополнения резервов.

Гликогеновое депо человека изначально минимальное и обусловлено только двигательными потребностями. Запасы увеличиваются уже спустя 3-4 месяца систематических интенсивных тренировок с высоким объемом нагрузки благодаря насыщению мышц кровью и принципу суперкомпенсации. Это приводит к:

  • увеличению выносливости;
  • росту мышечной массы;
  • изменению веса в процессе тренировки.

Специфика гликогена заключается в невозможности влияния на силовые показатели, а для увеличения гликогенового депо необходимы многоповторные тренировки. Если рассматривать с точки зрения паурлифтинга, то представители этого вида спорта не обладают серьезными запасами полисахарида ввиду специфики тренировок.

Когда вы ощущаете бодрость на тренировках, хорошее настроение, а мышцы выглядят наполненными и объемными – это верные признаки достаточного запаса энергии из углеводов в мышечных тканях.

Зависимость жиросжигания от гликогена

Час силовой или кардио нагрузки требует 100-150 г гликогена. Как только запасы заканчиваются, начинается разрушение мышечного волокна, а затем жировой ткани, чтобы организм получил энергию.

Для избавления от лишних килограммов и жировых отложений в проблемных местах во время сушки оптимальным временем тренинга будет длительный интервал между последним приемом пищи – натощак с утра, когда запасы гликогена истощены. Для сохранения мышечной массы во время «голодной» тренировки рекомендуется употребить порцию BCAA.

Как гликоген влияет на наращивание мышечной массы

Положительный результат в увеличении количества мышечной массы тесно связан с достаточным объемом гликогена на физические нагрузки и на восстановление запасов после. Это обязательное условие и в случае пренебрежения можно забыть о достижении поставленной цели.

Тем не менее, не следует устраивать углеводную загрузку незадолго до похода в тренажерный зал. Интервалы между едой и силовыми тренировками следует постепенно увеличивать – это учит организм разумно распоряжаться запасами энергии. На этом принципе построена система интервального голодания, которая позволяет набирать качественную массу без лишнего жира.

Биологическая роль гликогена в организме?

Как мы уже выше говорили, гликоген, это форма хранения излишек углеводов в организме, которые образованны из остатков глюкозы в гликогеновые гранулы.

Основная биологическая роль гликогена – восстановить уровень глюкозы до нормальных значений (эугликемию), то есть метабилизироваться в кровь при недостатке глюкозы, таким образом снабдить организм драгоценной энергией.

Для поддержания энергетических функций всего организма, используется гликоген запасённой исключительно в клетках печени (гепатоцитах), именно поэтому сделана в начале статьи оговорка, что мышечный гликоген имеет значение только в спорте, то есть при выполнении физических упражнений, только запасенные углеводы в печени превращаются в глюкозу, гликоген в мышечной массе не используются для поддержания уровня сахара в организме, он используются для выполнения упражнений.

Биологическая роль гликогена

Согласно научным данным (источник Артур К. Гайтон, Джон Э. Холл. Медицинская физиология / под ред. В. И. Кобрин), «печенночный» гликоген может составлять 5-6% от массы самой печении (порядка 100-200 грамм для взрослого человека), соответственно при увеличенном синтезе гликогена в печени.

Несмотря на то, что углеводы по своей природе является универсальным источником энергии, из которых организм получает глюкозу, жиры и белки так же могут быть использованы в качестве питательного источника, жирные кислоты расщепляются на триглицериды, а белки на аминокислоты, в первом случае процесс называется липолиз, во втором глюконеогенез, в условиях длительного голодания используются в основном заменимые аминокислоты для биосинтеза глюкозы.

Химическая формула гликогена

Еще одним интересным свойством для похудения обладает гликоген – связывание воды. Ученые определили, что на 1 грамм гликогена (резервной глюкозы) приходиться порядка 2,7 грамм воды. То есть данное свойство гликогена можно наглядно использовать в быстрых диетах для похудения, можно сказать паразитировать на нем, ведь от того, что вы похудели на резком отказе от сахара, уйдет не жир, а вода, связанная с гликогеном, только представьте если 1 грамм гликогена связывает 2,7 грамма воды, значит 400 грамм животного крахмала = 1 кг воды примерно, это свойство гликогена объясняет повышенную потливость во время интенсивных упражнений, и конечно резкий сброс веса при отказе от углеводов.

Когда спортсмен возвращается к своему привычному рациону питания, с обычным количеством углеводов, вес очень быстро возвращается, так как по факту экспресс безуглеводные диеты снизили вес не за счет сжигания жира, а за счет вывода жидкости.

Почему гликоген основной поставщик энергии для организма?

Первоначально белки, жиры и углеводы из нашей пищи расщепляются на более мелкие молекулы. Белки разделяются на аминокислоты, жиры — на триглицериды, а углеводы — на простой сахар, называемый глюкозой.

При определенных обстоятельствах, когда уровень глюкозы очень снижен (например, в период голодовки) организм может превращать глицерин (образующий при расщеплении жирных кислот) и белки в углеводы, то есть в глюкозу, процесс называется глюконеогенез, причем первые идут в расход аминокислоты, именно поэтому, отказ от еды не избавляет человека от жировых отложений, основная масса при голодовке уходит за счет разрушения мышц.

Глюконеогенез не основной путь снабжения человека глюкозой, точнее даже он малоэффективный в этом плане, так как количество сахара глюкозы очень мало на выходе, хватает лишь на поддержания жизненно важных функций, и именно поэтому гликоген является основным энергетическим поставщиком для органов и тканей организма.

Гликоген как поставщик энергии

Если в организме присутствует более 4 грамм циркулирующей по крови глюкозы, это может привезти к различным заболеваниям, которые вызваны повреждением кровеносных сосудов, в первую очередь инсульт, инфаркт, диабет, атеросклероз, так вот для предотвращения такого опасного для организма состояния излишки глюкозы аккумулируются в виде гранул гликогена в клетках печени и мышечной ткани, которые при необходимости (сниженном уровне сахара в крови) могут быть преобразованы обратно в глюкозу.

Что это такое в биологии: биологическая роль

Нашему телу еда в первую очередь нужна как источник энергии, а уже потом, как источник удовольствия, антистрессовый щит или возможность «побаловать» себя. Как известно, энергию мы получаем из макронутриентов: жиров, белков и углеводов.

Жиры дают 9 ккал, а белки и углеводы — 4 ккал. Но не смотря на большую энергетическую ценность жиров и важную роль незаменимых аминокислот из белков важнейшими «поставщиками» энергии в наш организм являются углеводы.

Почему? Ответ прост: жиры и белки являются «медленной» формой энергии, т.к. на их ферментацию требуется определенное время, а углеводы — относительно «быстрой». Все углеводы (будь то конфета или хлеб с отрубями) в конце концов расщепляются до глюкозы, которая необходима для питания всех клеток организма.

Схема расщепления углеводов

Строение

Гликоген — это своеобразный «консервант» углеводов, другими словами, энергетические резервы организма — сохраненная про запас для последующих энергетических нужд глюкоза. Она хранится в связанном с водой состоянии. Т.е. гликоген — это «сироп» калорийностью 1-1.3 ккал/гр (при калорийности углеводов 4 ккал/г).

По сути, молекула гликогена состоит из остатков глюкозы, это запасное вещество на случай нехватки энергии в организме!

Структурная формула строения фрагмента макромолекулы гликогена (C6H10O5) выглядит схематично так:

Вообще, гликоген — это полисахарид, а значит, относится к классу «сложных» углеводов:

В каких продуктах содержится

В гликоген может пойти только углевод

Поэтому крайне важно держать в своем рационе планку углеводов не ниже 50 % от общей калорийности. Употребляя нормальный уровень углеводов (около 60% от суточного рациона) вы по максимуму сохраняете собственный гликоген и заставляете организм очень хорошо окислять углеводы

Важно иметь в рационе хлебобулочные изделия, каши, злаки, разные фрукты и овощи. Лучшими источниками гликогена являются: сахар, мед, шоколад, мармелад, варенье, финики, изюм, инжир, бананы, арбуз, хурма, сладкая выпечка

Лучшими источниками гликогена являются: сахар, мед, шоколад, мармелад, варенье, финики, изюм, инжир, бананы, арбуз, хурма, сладкая выпечка.

Осторожно к подобной пище стоит отнестись лицам с дисфункцией печени и недостатком ферментов

Синтез и превращение

Прежде чем рассматривать пользу гликогена как сложного углевода, разберемся, почему вообще в организме возникает такая альтернатива – гликоген в мышцах или жировые ткани. Для этого рассмотрим структуру вещества. Гликоген – это соединение из сотен молекул глюкозы. Фактически это чистый сахар, который нейтрализован и не попадает в кровь, пока организм сам его не запросит (источник – Википедия).

Жирная кислота

Что же такое жирная кислота, которая получается из углеводов? Фактически – это более сложная структура, в которой участвуют не только углеводы, но и транспортирующие белки. Последние связывают и уплотняют глюкозу до более трудно расщепляемого состояния.

Все это делается исключительно для создания резерва энергии в случае серьезного дефицита калорий. Гликоген же накапливается в клетках, и распадается на глюкозу при малейшем стрессе. Но и синтез его значительно проще.

Содержание гликогена в организме человека

Сколько гликогена может содержать организм? Здесь все зависит от тренировки собственных энергетических систем. Изначально размер гликогенового депо нетренированного человека минимален, что обусловлено его двигательными потребностями.

При интенсивном и продолжительном тренинге запасы гликогена увеличиваются в организме в несколько раз.

Это, в свою очередь, приводит к таким результатам:

  • возрастает выносливость;
  • объём мышечной ткани увеличивается;
  • наблюдаются значительные колебания в весе во время тренировочного процесса

Роль вещества в организме человека

Функции гликогена весьма разнообразны. Помимо запасного компонента, он играет и другие роли.

Печень

Находящийся в печени гликоген помогает поддерживать нормальный уровень сахара в крови, регулируя его с помощью выделения или поглощения излишков в клетках глюкозы. Если запасы становятся слишком большими, а источник энергии продолжает поступать в кровь, он начинает откладываться уже в виде жиров в печени и подкожной жировой клетчатке.

Вещество позволяет осуществлять процесс синтеза сложных углеводов, участвуя в его регулировании и, значит, в обменных процессах организма.

Питание мозга и других органов происходит во многом благодаря гликогену, поэтому его присутствие позволяет осуществлять и мыслительную деятельность, обеспечивая достаточное количество энергии для деятельности головного мозга, потребляющего до 70 процентов глюкозы, образующейся в печени.

Мышцы

Важное значение имеет гликоген и для мышц, где он содержится в немного меньшем количестве. Основная задача его здесь – обеспечение движения

Во время действия происходит потребление энергии, которая образуется за счет расщепления углевода и окисления глюкозы, во время покоя и поступления новых питательных веществ в организм – создание новых молекул.

Причем это касается не только скелетных, но и сердечной мышцы, качество работы которой во многом зависит от наличия гликогена, а у людей с недостатком массы тела развиваются патологии сердечной мышцы.

При недостатке вещества в мышцах начинают расщепляться другие вещества: жиры и белки. Распад последних особенно опасен, поскольку приводит к разрушению самой основы мышц и дистрофии.

В тяжелых ситуациях организм способен выйти из положения и создать себе глюкозу самостоятельно из неуглеводных веществ, этот процесс называется гликонеогенезом.

Однако, его значение для организма значительно меньше, поскольку разрушение происходит по несколько иному принципу, не давая того количества энергии, которое необходимо организму. В то же время используемые для него вещества могли бы быть израсходованы на другие жизненно важные процессы.

Кроме того, это вещество обладает свойством связывать воду, накапливая и ее тоже. Именно поэтому во время интенсивных тренировок спортсмены сильно потеют, это выделяется связанная с углеводом вода.

Образовательное видео:

Этапы образования гликогена

Итак, что же происходит в процессе синтеза гликогена из глюкозы?

1. Глюкоза после присоединения остатка фосфорной кислоты становится глюкозо-6-фосфатом. Это происходит благодаря ферменту гексокиназе. Этот фермент имеет несколько разных форм. Гексокиназа в мышцах немного отличается от гексокиназы в печени. Та форма этого фермента, которая присутствует в печени, хуже связывается с глюкозой, а продукт, образующийся в ходе реакции, не ингибирует протекание реакции. Благодаря этому клетки печени способны поглощать глюкозу только тогда, когда её много, и могу сразу превратить в глюкозо-6-фосфат очень много субстрата, даже если не успевают его переработать.

2. Фермент фосфоглюкомутаза катализирует превращение глюкозо-6-фосфата в его изомер — глюкозо-1-фосфат.

3. Полученный глюкозо-1-фосфат потом соединяется с уридинтрифосфатом, образуя УДФ-глюкозу. Катализирует этот процесс фермент УДФ-глюкозопирофосфорилаза. Эта реакция не может протекать в обратную сторону, то есть является необратимой в тех условиях, которые присутствуют в клетке.

4. Фермент гликогенсинтаза переносит остаток глюкозы на формирующуюся молекулу гликогена.

5. Гликогенразветвляющий фермент добавляет точки ветвления, создавая новые «веточки» на молекуле гликогена. Позже на конец этого ответвления добавляются новые остатки глюкозы с помощью гликогенсинтазы.

Регуляция образования гликогена

Образование и расщепление гликогена регулируют несколько гормонов, а именно:

1) инсулин
2) глюкагон
3) адреналин

Образование гликогена происходит после того, как концентрация глюкозы в крови повышается: раз глюкозы много, то её необходимо запасти впрок. Поглощение глюкозы клетками в основном регулируется двумя гормонами-антагонистами, то есть гормонами с противоположным действием: инсулином и глюкагоном. Оба гормона выделяются клетками поджелудочной железы.

Инсулин синтезируется, если глюкозы в крови много. Это обычно бывает после того, как человек поел, в особенности если еда — это богатая углеводами пища (например, если съесть мучное или сладкое). Все углеводы, которые содержатся в пище, расщепляются до моносахаридов, и уже в таком виде через стенку кишечника всасываются в кровь. Соответственно, уровень глюкозы повышается.

Когда рецепторы клеток реагируют на инсулин, клетки поглощают глюкозу из крови, и её уровень вновь снижается. Кстати, именно поэтому диабет – недостаток инсулина – образно называют «голод среди изобилия», ведь в крови после употребления пищи, которая богата углеводами, появляется очень много сахара, но без инсулина клетки не могут его поглотить. Часть глюкозы клетки используют для получения энергии, а оставшуюся превращают в жир. Клетки печени используют поглощённую глюкозу для синтеза гликогена. Если же в крови мало глюкозы, то происходит обратный процесс: поджелудочная железа выделяет гормон глюкагон, и клетки печени начинают расщеплять гликоген, выделяя глюкозу в кровь, или синтезировать глюкозу заново из более простых молекул, таких как молочная кислота.

Адреналин также приводит к распаду гликогена, потому что всё действие этого гормона направлено на то, чтобы мобилизовать организм, подготовить его к реакции по типу «бей или беги». А для этого необходимо, чтобы концентрация глюкозы стала выше. Тогда мышцы смогут использовать её для получения энергии.

Таким образом, поглощение пищи приводит к выделению в кровь гормона инсулина и синтезу гликогена, а голодание – к выделению гормона глюкагона и распаду гликогена. Выделение адреналина, происходящее в стрессовых ситуациях, также приводит к распаду гликогена.

Превращения гликогена в глюкозу

Мышечный гликоген превращается в глюкозу для местного применения, при этом запасы его весьма скромны относительно печени, так в мышцах содержится порядка 1% гликогена по отношению ко всей мышечной массе, однако суммарный вес относительно гликогена в печени (в гепатоцитах) чаще всего превышает.

Таким образом, под воздействием нервной системы, гормонами происходит регуляция метаболизма гликогена: при недостатке в организме глюкозы, под действием фермента происходит расщепление гликогена.

Получение глюкозы из гликогена

Если углубиться в этом вопрос, то под действием адреналина происходит синтез глюкозы из гликогена, который связывается со своим рецептором и активизирует работу фермента аденилатциклазу, для синтеза циклического аденозинмонофосфата (АМФ), который запускает множество биохимических реакций, приводящих к активации фермента гликогенфосфорилазы, отвечающей за самую последнюю стадию процесса гликогено́лиза (расщепления гликогена до глюкозы в основном мускулах и печени).

В печени стимулирование расщепления гликогена до глюкозы происходит при участии одного из гормонов поджелудочной железы – глюкагона, который выделяет альфа-клетки при долгом отсутствии поступлении пищи, а также инсулина и адреналина, а в мышцах при участии инсулина и адреналина.

Гликоген

Гликоген является одним из основных углеводов, типичным для человека и животных.

Определение

Гликоген – полисахарид, состоящий из большого количества (до n=30000) остатков глюкозы (рис. 1).

Эмпирическая формула гликогена – (С6Н10О5)n, где: С6Н10О5 – остаток глюкозы, n — количество остатков глюкозы.

Где содержится в организме человека

В организме человека содержится около 450 г гликогена. Треть этого количества (то есть около150 г) накапливается в печени, остальные две трети (около 300 г) накапливается в мышцах (Я. Кольман, К.-Г. Рём, 2004), рис. 2.  Другими словами в печени содержится 5-6% от массы печени,  в мышцах — 2-3% от массы мышц. Содержание гликогена в других органах незначительно.  Гликоген печени служит прежде всего для поддержания уровня глюкозы в крови. Гликоген мышц служит резервом энергии и не участвует  регуляции уровня глюкозы в крови.

Рис. 2. Баланс гликогена в организме человека (Я. Кольман, К.-Г. Рём, 2004)

Синтез гликогена

Гликоген синтезируется в печени и мышцах из глюкозы, поступающей по кровеносным сосудам. Собственно, в печени гликоген представляет собой запасную, резервную форму глюкозы или депо глюкозы.

Свободная глюкоза не может накапливаться в печени и мышцах. Это связано с тем, что молекулы глюкозы имеют малые размеры и легко проходят через внешнюю оболочку клеток печени (гепатоцитов) и через сарколемму мышечных волокон (С.С. Михайлов, 2009). Синтез гликогена требует затрат энергии. Для присоединения к гликогену одного остатка глюкозы необходимо 41 кДж энергии. Синтез гликогена усиливает гормон инсулин.

О взаимосвязи гормонов и мышечной массы можно прочесть в моей книге «Гормоны и гипертрофия скелетных мышц человека»

Распад гликогена

В печени распад (лизис) гликогена называется гликогенолизом. Так как в гликоген печени  распадается на глюкозу, этот процесс  называется глюкогенезом. Он ускоряется гормонами глюкагоном, адреналином и норадреналином. При мышечной деятельности скорость мобилизации гликогена в печени зависит от интенсивности выполненной нагрузки. Так, например, при умеренной физической нагрузке скорость мобилизации гликогена возрастает в 2-3 раза, а при интенсивной – в 7-10 раз по сравнению с состоянием покоя.

Распад гликогена в печени происходит и во время отдыха. В результате этого образующаяся глюкоза способствует восстановлению запасов гликогена в сердечной мышце и скелетных мышцах (Н.И. Волков с соавт., 2000).

В мышцах гликоген обычно распадается при выполнении физической нагрузки. Распад гликогена стимулирует гормон адреналин. Если распад гликогена происходит в анаэробных условиях, этот процесс называется гликолизом.

Литература

  1. Кольман Я., Рём К.-Г. Наглядная биохимия.- М.: Мир, 2004.- 469 с.
  2. Мак-Комас, А. Дж. Скелетные мышцы. – Киев: Олимпийская литература, 2001.- 407 с.
  3. Михайлов, С. С. Спортивная биохимия. – М.: Советский спорт, 2009.– 348 с.

Из чего синтезируется гликоген?

Субстратом для синтеза гликогена, или гликогеногенеза, как его по-другому называют, служит глюкозо-6-фосфат. Это молекула, которая получается из глюкозы после присоединения к шестому атому углерода остатка фосфорной кислоты. Глюкоза, образующая глюкозо-6-фосфат, попадает в печень из крови, а в кровь – из кишечника.

Возможен и другой вариант: глюкоза может быть заново синтезирована из более простых предшественников (молочной кислоты). В таком случае из крови глюкоза попадает, например, в мышцы, где расщепляется до молочной кислоты с выделением энергии, а потом накопленная молочная кислота транспортируется в печень, и клетки печени заново синтезируют из неё глюкозу. Потом эту глюкозу можно превратить в глюкозо-6-фосфот и далее на его основе синтезировать гликоген.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector