Плотность воды при 100°c. конвертер величин

Плотность воды: аномалия

Аномалия заключается в том, что жидкое состояние увеличивает
плотность до температуры в 4°С, а далее — понижается. Другими словами, именно в
этом отрезке вода достигает максимальной плотности. Но в других агрегатных
состояниях параметр становится на порядок ниже: у пара его сложно рассчитать,
он практически невесомый, а лёд и снег меньше почти на 100 кг.

Аномалии плотности воды вызывают следующие явления:

  • заморозка приводит к расширению, отсюда объем возрастает, но плотность снижается;
  • плотность льда ниже, чем концентрация в жидком состоянии, несмотря на одинаковый источник — воду;
  • вода имеет низкий коэффициент расширения и сжатия.

Отклонение в полной мере демонстрируется на примере льда. Он
не тонет, поскольку его плотность меньше, чем у воды. Аналогичная ситуация
складывается со снегом — он плавает на поверхности, пока не растает. При
смешивании талой воды с обычной на поверхности появляются видимые разводы — это
эффект смешивания, когда жидкость набирает аналогичную концентрацию. Однако в
похожей ситуации с топливом или маслами такое не пройдет, они останутся на поверхности.
Растаявший снег всё ещё вода, а другие жидкости ей не станут.

Свойство плотности имеет большое значение для живых
организмов. Из-за него водоемы промерзают сверху вниз, позволяя выжить
находящимся подо льдом формам жизни. Уникальные характеристики воды с её тремя
состояниями только подтверждают мысль, что природа полностью гармонична.

Плотность воды в зависимости от температуры

Принято считать, что плотность воды равна 1000 кг/м3, 1000 г/л или 1 г/мл, но часто ли мы задумываемся при какой температуре получены эти данные?

Максимальная плотность воды достигается при температуре 3,8…4,2°С. В этих условиях точное значение плотности воды составляет 999,972 кг/м3. Такая температурная зависимость плотности характерна только для воды. Другие распространенные жидкости не имеют максимума плотности на этой кривой — их плотность равномерно снижается по мере роста температуры.

Вода существует как отдельная жидкость в диапазоне температуры от 0 до максимальной 374,12°С — это ее критическая температура, при которой исчезает граница раздела между жидкостью и водяным паром. Значения плотность воды при этих температурах можно узнать в таблице ниже. Данные о плотности воды представлены в размерности кг/м3 и г/мл.

В таблице приведены значения плотности воды в кг/м3 и в г/мл (г/см3), допускается интерполяция данных. Например, плотность воды при температуре 25°С можно определить, как среднее значение от величин ее плотности при 24 и 26°С. Таким образом, при температуре 25°С вода имеет плотность 997,1 кг/м3 или 0,9971 г/мл.

Значения в таблице относятся к пресной или дистиллированной воде. Если рассматривать, например, морскую или соленую воду, то ее плотность будет выше — плотность морской воды равна 1030 кг/м3. Плотность соленой воды и водных растворов солей можно узнать в этой таблице. Плотность воды при различных температурах — таблица

t, °С ρ, кг/м3 ρ, г/мл t, °С ρ, кг/м3 ρ, г/мл t, °С ρ, кг/м3 ρ, г/мл
999,8 0,9998 62 982,1 0,9821 200 864,7 0,8647
0,1 999,8 0,9998 64 981,1 0,9811 210 852,8 0,8528
2 999,9 0,9999 66 980 0,98 220 840,3 0,8403
4 1000 1 68 978,9 0,9789 230 827,3 0,8273
6 999,9 0,9999 70 977,8 0,9778 240 813,6 0,8136
8 999,9 0,9999 72 976,6 0,9766 250 799,2 0,7992
10 999,7 0,9997 74 975,4 0,9754 260 783,9 0,7839
12 999,5 0,9995 76 974,2 0,9742 270 767,8 0,7678
14 999,2 0,9992 78 973 0,973 280 750,5 0,7505
16 999 0,999 80 971,8 0,9718 290 732,1 0,7321
18 998,6 0,9986 82 970,5 0,9705 300 712,2 0,7122
20 998,2 0,9982 84 969,3 0,9693 305 701,7 0,7017
22 997,8 0,9978 86 967,8 0,9678 310 690,6 0,6906
24 997,3 0,9973 88 966,6 0,9666 315 679,1 0,6791
26 996,8 0,9968 90 965,3 0,9653 320 666,9 0,6669
28 996,2 0,9962 92 963,9 0,9639 325 654,1 0,6541
30 995,7 0,9957 94 962,6 0,9626 330 640,5 0,6405
32 995 0,995 96 961,2 0,9612 335 625,9 0,6259
34 994,4 0,9944 98 959,8 0,9598 340 610,1 0,6101
36 993,7 0,9937 100 958,4 0,9584 345 593,2 0,5932
38 993 0,993 105 954,5 0,9545 350 574,5 0,5745
40 992,2 0,9922 110 950,7 0,9507 355 553,3 0,5533
42 991,4 0,9914 115 946,8 0,9468 360 528,3 0,5283
44 990,6 0,9906 120 942,9 0,9429 362 516,6 0,5166
46 989,8 0,9898 125 938,8 0,9388 364 503,5 0,5035
48 988,9 0,9889 130 934,6 0,9346 366 488,5 0,4885
50 988 0,988 140 925,8 0,9258 368 470,6 0,4706
52 987,1 0,9871 150 916,8 0,9168 370 448,4 0,4484
54 986,2 0,9862 160 907,3 0,9073 371 435,2 0,4352
56 985,2 0,9852 170 897,3 0,8973 372 418,1 0,4181
58 984,2 0,9842 180 886,9 0,8869 373 396,2 0,3962
60 983,2 0,9832 190 876 0,876 374,12 317,8 0,3178

Следует отметить, что при увеличении температуры воды (выше 4°С) ее плотность уменьшается. Например, по данным таблицы, плотность воды при температуре 20°С равна 998,2 кг/м3, а при ее нагревании до 90°С, величина плотности снижается до значения 965,3 кг/м3. Удельная масса воды при нормальных условиях значительно отличается от ее плотности при высоких температурах. Средняя плотность воды, находящейся при температуре 200…370°С намного меньше ее плотности в обычном температурном диапазоне от 0 до 100°С.

Смена агрегатного состояния воды приводит к существенному изменению ее плотности. Так, величина плотности льда при 0°С имеет значение 916…920 кг/м3, а плотность водяного пара составляет величину в сотые доли килограмма на кубический метр. Следует отметить, что значение плотности воды почти в 1000 раз больше плотности воздуха при нормальных условиях.

Кроме того, вы также можете ознакомиться с таблицей плотности веществ и материалов.

Определение плотности жидкости при помощи пикнометра

Чистый сухой пикнометр (рис. 4) взвешивают на аналитических весах с точностью до 0,0002 г. Затем заполняют его дистиллированной водой немного выше метки, закрывают пробкой и помещают в термостат. После 20-минутной выдержки в термостате при температуре 20+-0,1 С уровень воды в пикнометре быстро доводят до метки, отбирая излишек воды пипеткой, капилляром или свернутой полоской чистой неволокнистой фильтровальной бумаги. Пикнометр снова закрывают пробкой, термостатируют еще 10 мин, проверяют соответствие уровня жидкости метке, протирают снаружи досуха чистой мягкой тканью или фильтровальной бумагой и оставляют на 10 мин за стеклом коробки аналитических весов, а затем снова взвешивают. После этого пикнометр освобождают от воды, споласкивают последовательно спиртом и эфиром, затем удаляют остатки эфира продуванием воздуха, заполняют пикнометр испытуемой жидкостью и проводят те же операции, что и с дистиллированной водой.

Рис. 4. Пикнометры.

Относительную плотность жидкости вычисляют по формуле:

где d — относительная плотность испытуемой жидкости; m — масса пустого пикнометра, г; m1 — масса пикнометра с дистиллированной водой, г; т2 — масса пикнометра с испытуемой жидкостью, г; 0,99703 — значение относительной плотности воды при 20 С с учетом плотности воздуха; 0,0012 — плотность воздуха при 20 С и давлении 760 мм рт. ст.

Значение 0,0012 надо прибавить к рассчитанной плотности, так как пикнометр перед заполнением жидкости содержал воздух.

Следует обращать внимание на то, чтобы при вытирании пикнометра на его стенках не оставались волокна фильтровальной бумаги или ткани. Нельзя сушить пикнометр путем нагревания

Применение пикнометра позволяет определять относительную плотность с точностью до 0,001.

Плотность жидкости в граммах на 1 мл при температуре 20 С рассчитывают, исходя из массы 1 мл анализируемого вещества, и прибавляют поправку на взвешивание в воздухе в соответствии со следующей таблицей:

Масса 1 мл, г Поправка
0,60-1,03 0,0011
1,04-1,72 0,0010
1,73-2,00 0,0009

Массу 1 мл жидкости определяют делением выраженной в граммах массы в воздухе, заполняющей пикнометр жидкости при 20 С, на объем пикнометра, выраженный в миллилитрах. Объем пикнометра устанавливают аналогично описанному выше, исходя из того, что 1 л воды при 20 С имеет массу 997,18 г.

Определение средней плотности щебня

Истинная плотность щебня (гравия) определяется путем гидростатического взвешивания (рис. 1).

Рис. 1. Весы для гидростатического взвешивания1 — сетчатый (перфорированный) стакан; 2 — сосуд со сливом для воды; 3 — стаканчик с дробью для уравновешивания массы сетчатого стакана в воде; 4 — разновесы

Насыщенный водой щебень, после двухчасового выдерживания в воде при температуре (202)°С, вытирается влажной тканью и сразу взвешивается, сначала на технических, а затем на гидростатических весах. Разность массы навески щебня в насыщенном состоянии на воздухе и воде даем объем навески.

Истинная плотность m вычисляется по формуле:

где т — масса пробы в сухом состоянии, г;

т1 масса пробы в насыщенном водой состоянии на воздухе, г;

т2 масса образца или пробы в насыщенном водой состоянии в воде, г;

в плотность воды, принимаемая равной 1 г/см 3 .

Формула нахождения плотности [ править | править код ]

Плотность (плотность однородного тела или средняя плотность неоднородного) находится по формуле:

ρ = m V , ho =>,>

где m

— масса тела,V — его объём; формула является просто математической записью определения термина «плотность», данного выше.

При вычислении плотности газов при нормальных условиях эта формула может быть записана и в виде:

ρ = M V m , ho =>>,>где М

— молярная масса газа, V m >— молярный объём (при нормальных условиях приближённо равен 22,4 л/моль).

Плотность тела в точке записывается как

ρ = d m d V , ho =>,>

тогда масса неоднородного тела (тела с плотностью, зависящей от координат) рассчитывается как

m = ∫ ρ ( r ) d 3 r = ∫ ρ ( r ) d V = ∫ d m . ho (mathbf )d^<3>mathbf=int ho (mathbf)dV=int dm.>

Насыпная плотность гранитного щебня

Учесть весь объем зерна щебня вместе с пустотами внешними и внутренними может вычисление насыпной плотности материала. Это значение чаще всего используется, когда подсчитывают расход материала при выборе состава бетона, чтобы составить строительные сметы. Зависит насыпная плотность от фракции щебня, и чем крупнее камень, тем показатель меньше, так как между фракциями в этом случае образуется больше пустот.

Чтобы определить это значение, требуется высушить контрольную навеску щебня гранитного до его постоянного веса. Вслед за этим материал засыпают в литровую емкость. Найденные значения позволяют вычислить насыпную плотность материала.

Что такое плотность и как ее рассчитать

Плотность вещества — это его масса в единице объема. Плотность — уникальное физическое свойство, которое стало основой для великого открытия Архимеда — его знаменитого закона: на тело, погруженное в жидкость действует выталкивающая сила, которая равна массе вытесненной жидкости.

Наглядный пример этому — простой эксперимент «Башня плотности». Он доступен для проведения в домашних условиях.

Плотность обозначают символом ρ, в химии можно встретить ее обозначение буквой d латинского алфавита.

Для ее расчета используют следующую формулу: ρ = m/V, где:ρ = плотность тела, m = его масса, V = объем.

  1. Плотность можно объяснить как соотношение между массой вещества и объемом, который он занимает.
  2. По физическим свойствам — чем плотнее вещество, тем больше его масса в единице объема.
  3. Если тела при одинаковом объеме имеют разную массу, то это значит, что у них разная плотность..

Плотности астрономических объектов [ править | править код ]

  • Средние плотности небесных тел Солнечной системы см. на врезке.
  • Межпланетная среда в Солнечной системе достаточно неоднородна и может меняться во времени, её плотность в окрестностях Земли

10 −21 ÷10 −20 кг/м³. Плотность межзвёздной среды

10 −23 ÷10 −21 кг/м³.

Плотность межгалактической среды 2×10 −34 ÷5×10 −34 кг/м³.
Средняя плотность красных гигантов на много порядков меньше из-за того, что их радиус в сотни раз больше, чем у Солнца.
Плотность белых карликов 10 8 ÷10 12 кг/м³
Плотность нейтронных звёзд имеет порядок 10 17 ÷10 18 кг/м³.
Средняя (по объёму под горизонтом событий) плотность чёрной дыры зависит от её массы и выражается формулой:

ρ = 3 c 6 32 π M 2 G 3 . <displaystyle ho =<frac <3,c^<6>><32pi M^<2>G^<3>>>.>Средняя плотность падает обратно пропорционально квадрату массы чёрной дыры (ρ

M −2 ). Так, если чёрная дыра с массой порядка солнечной обладает плотностью около 10 19 кг/м³, превышающей ядерную плотность (2×10 17 кг/м³), то сверхмассивная чёрная дыра с массой в 10 9 солнечных масс (существование таких чёрных дыр предполагается в квазарах) обладает средней плотностью около 20 кг/м³, что существенно меньше плотности воды (1000 кг/м³).

Меры безопасности

Главным правилом безопасности во время работы с токами станет то, что перед любыми действиями требуется обесточить электросеть. В процессе работ также необходимо следовать таким рекомендациям:

  • Запрещено ремонтировать включенное в электросеть приспособление.
  • При осуществлении работ на электрощитке должно присутствовать предупреждение.
  • Работа с высоким напряжением допустимо лишь с помощником.
  • Требуется наблюдать за изоляцией каждого провода и контролировать заземление.

Напряжение свыше 24 вольт будет опасно для жизни. Во время работы с напряжением больше данного параметра требуется спецдопуск. При работах необходимо пользоваться специнструментами с повышенным уровнем защиты.

Правила безопасности

Использование электротока разнообразно, так как без него нельзя представить сегодня жизнь. Необходимо понять принципы его функционирования для направления электроэнергии в правильное русло. Электроток течет по законам физики, используемым для создания разнообразных приспособлений. Чтобы грамотно использовать его, требуется ознакомиться с основными электровеличинами.

Зачем измерять плотность бензина?

Такая характеристика как плотность бензина в ряде случаев помогает определять химический состав вещества, а также идентифицировать его. К примеру, если измеренная плотность вещества больше, или меньше требуемой в соответствии с ГОСТом, то можно с уверенностью сказать, что этот не бензин без проведения более детального химического анализа.

Также определение плотности бензина помогает на практике вычислить приблизительную массу вещества в резервуаре, когда невозможно его взвесить напрямую. Требование к данной методике измерения содержатся в Государственном стандарте Р 8.595-2004.

Закон Ома

В линейной и изотропной проводящей среде плотность тока связана с напряжённостью электрического поля в данной точке по закону Ома:

j→=σE→{\displaystyle {\vec {j}}=\sigma {\vec {E}}}

где σ {\displaystyle \sigma \ } — удельная проводимость среды, E→{\displaystyle {\vec {E}}} — напряжённость электрического поля. Или:

j→=1ρE→,{\displaystyle {\vec {j}}={\frac {1}{\rho }}{\vec {E}},}

где ρ {\displaystyle \rho \ } — удельное сопротивление.

В линейной анизотропной среде имеет место такое же соотношение, однако удельная электропроводность σ{\displaystyle \sigma } в этом случае, вообще говоря, должна рассматриваться как тензор, а умножение на неё — как умножение вектора на матрицу.

Формула для работы электрического поля (плотности её мощности)

w=E→⋅j→,{\displaystyle w={\vec {E}}\cdot {\vec {j}},}

вместе с законом Ома принимает для изотропной электропроводности вид:

w=σE2=j2σ≡ρj2,{\displaystyle w=\sigma E^{2}={\frac {j^{2}}{\sigma }}\equiv \rho j^{2},}

где σ{\displaystyle \sigma } и ρ{\displaystyle \rho } — скаляры, а для анизотропной:

w=E→σE→=j→ρj→,{\displaystyle w={\vec {E}}\sigma {\vec {E}}={\vec {j}}\rho {\vec {j}},}

где подразумевается матричное умножение (справа налево) вектора-столбца на матрицу и на вектор-строку, а тензор σ{\displaystyle \sigma } и тензор ρ{\displaystyle \rho } порождают соответствующие квадратичные формы.

Плотность синтетики и полусинтетики

По сути, показатель данного параметра синтетических и полусинтетических жидкостей идентичен. Отличие имеются только в способности менять состояние. Полусинтетика, имея минеральную составляющую, блокирует поршневую систему при низких температурах. Такие продукты подвержены термическому влиянию.

Несмотря на то, что синтетика менее подвержена зависимости от температур, не всегда показатель плотности может быть оптимален. Зависит это от нескольких моментов:

  • количество и качество пакета присадок. В некоторых случаях масса присадочных компонентов может быть вредна для двигателя;
  • на синтетические смеси негативно влияют максимальные температуры и длительная непрерывная эксплуатация;
  • в условиях максимальных температурных показателей возникает риск отказа системы охлаждения, и защита мотора становится неэффективной;
  • при высокой стоимости таких продуктов цикл их работы невысок. Срок годности — 12 месяцев, после чего жидкость становится бесполезной;
  • большое количество контрафактных продуктов в торговых точках.

Но даже при всех этих минусах синтетические машинные масла обеспечивают достойный уровень защиты двигателя в линейке аналогичных продуктов.

Минеральные масла

В результате крекинг-процесса производится разделение фракций нефти по плотности. После отделения топливных фракций, используемых для сжигания в цилиндрах мобильной техники, остаются тяжелые составляющие. Их используют для производства смазочных материалов.

Для придания определенных свойств моторных масел в них добавляют присадки:

противопенные присадки снижают возможность образования тонких пленок. Наличие подобных компонентов не дает возможность транспортировать по системе смазки смесь жидкости и газа. Поэтому при выжигании этих компонентов ухудшаются характеристики масла. Теряя противопенные составляющие, масляная основа увеличивает плотность;
противопригарные присадки работают дольше всех. В их составе используют соли редкоземельных металлов. Эти же присадки понижают адгезионные свойства. Несущая основа меньше прилипают к поверхности металла (чугуна, стали и алюминия). По мере срабатывания компонентов несколько снижается плотность масла;
моющие присадки содержат соли натрия и калия. Их наличие в составе смесей помогает вымывать пригоревшие остатки из небольших щелей и отверстий

Самое важное – это удаление остатков масла и замена новой порцией на коренных и шатунных шейках. По мере выгорания моющих составляющих наблюдается рост плотности.

Для этих типов моторных смазок важно то, что они имеют наибольшую плотность. При нагрузке на сопрягаемые детали КШМ при невысокой частоте вращения коленчатого вала (до 4000-5000 об/мин) несущая способность масляной пленки удовлетворительная

Плотности некоторых газов [ править | править код ]

Азот 1,250 Кислород 1,429
Аммиак 0,771 Криптон 3,743
Аргон 1,784 Ксенон 5,851
Водород 0,090 Метан 0,717
Водяной пар (100 °C) 0,598 Неон 0,900
Воздух 1,293 Радон 9,81
Гексафторид вольфрама 12,9 Углекислый газ 1,977
Гелий 0,178 Хлор 3,164
Дициан 2,38 Этилен 1,260

Для вычисления плотности произвольного идеального газа, находящегося в произвольных условиях, можно использовать формулу, выводящуюся из уравнения состояния идеального газа:

ρ = p M R T <displaystyle ho =<frac >> ,

  • p <displaystyle p>— давление,
  • M <displaystyle M>— молярная масса,
  • R <displaystyle R>— универсальная газовая постоянная, равная приблизительно 8,314 Дж/(моль·К)
  • T <displaystyle T>— термодинамическая температура.

Физические свойства воды при температуре от 0 до 100°С

В таблице представлены следующие физические свойства воды: плотность воды ρ, удельная энтальпия h, удельная теплоемкость Cp, теплопроводность воды λ, температуропроводность воды а, вязкость динамическая μ, вязкость кинематическая ν, коэффициент объемного теплового расширения β, коэффициент поверхностного натяжения σ, число Прандтля Pr. Физические свойства воды приведены в таблице при нормальном атмосферном давлении в интервале от 0 до 100°С.

Физические свойства воды существенно зависят от ее температуры. Наиболее сильно эта зависимость выражена у таких свойств, как удельная энтальпия и динамическая вязкость. При нагревании значение энтальпии воды значительно увеличивается, а вязкость существенно снижается. Другие физические свойства воды, например, коэффициент поверхностного натяжения, число Прандтля и плотность уменьшаются при росте ее температуры. К примеру, плотность воды при нормальных условиях (20°С) имеет значение 998,2 кг/м3, а при температуре кипения снижается до 958,4 кг/м3.

Такое свойство воды, как теплопроводность (или правильнее — коэффициент теплопроводности) при нагревании имеет тенденцию к увеличению. Теплопроводность воды при температуре кипения 100°С достигает значения 0,683 Вт/(м·град). Температуропроводность H2O также увеличивается при росте ее температуры.

Следует отметить нелинейное поведение кривой зависимости удельной теплоемкости этой жидкости от температуры. Ее значение снижается в интервале от 0 до 40°С, затем происходит постепенный рост теплоемкости до величины 4220 Дж/(кг·град) при 100°С.

Физические свойства воды при атмосферном давлении — таблица
t, °С → 10 20 30 40 50 60 70 80 90 100
ρ, кг/м3 999,8 999,7 998,2 995,7 992,2 988 983,2 977,8 971,8 965,3 958,4
h, кДж/кг 42,04 83,91 125,7 167,5 209,3 251,1 293 335 377 419,1
Cp, Дж/(кг·град) 4217 4191 4183 4174 4174 4181 4182 4187 4195 4208 4220
λ, Вт/(м·град) 0,569 0,574 0,599 0,618 0,635 0,648 0,659 0,668 0,674 0,68 0,683
a·108, м2/с 13,2 13,7 14,3 14,9 15,3 15,7 16 16,3 16,6 16,8 16,9
μ·106, Па·с 1788 1306 1004 801,5 653,3 549,4 469,9 406,1 355,1 314,9 282,5
ν·106, м2/с 1,789 1,306 1,006 0,805 0,659 0,556 0,478 0,415 0,365 0,326 0,295
β·104, град-1 -0,63 0,7 1,82 3,21 3,87 4,49 5,11 5,7 6,32 6,95 7,52
σ·104, Н/м 756,4 741,6 726,9 712,2 696,5 676,9 662,2 643,5 625,9 607,2 588,6
Pr 13,5 9,52 7,02 5,42 4,31 3,54 2,93 2,55 2,21 1,95 1,75

Примечание: Температуропроводность в таблице дана в степени 108 , вязкость в степени 106 и т. д. для других свойств. Размерность физических свойств воды выражена в единицах СИ.

Теплофизические свойства воды на линии насыщения (100…370°С)

В таблице представлены теплофизические свойства воды H2O на линии насыщения в зависимости от температуры (в диапазоне от 100 до 370°С). Каждому значению температуры, при которой вода находится в состоянии насыщения, соответствует давление ее насыщенного пара. При этих параметрах жидкость и ее пар находятся в состоянии насыщения или термодинамического равновесия.

В таблице даны следующие теплофизические свойства воды в состоянии насыщенной жидкости:

  • давление насыщенного пара при указанной температуре p, Па;
  • плотность воды ρ, кг/м 3 ;
  • удельная энтальпия воды h, кДж/кг;
  • удельная (массовая) теплоемкость Cp, кДж/(кг·град);
  • теплопроводность λ, Вт/(м·град);
  • температуропроводность a, м 2 /с;
  • вязкость динамическая μ, Па·с;
  • вязкость кинематическая ν, м 2 /с;
  • коэффициент теплового объемного расширения β, К -1 ;
  • коэффициент поверхностного натяжения σ, Н/м;
  • число Прандтля Pr.

Свойства воды на линии насыщения имеют зависимость от температуры. Ее влияние особенно сказывается на вязкости воды — динамическая вязкость H2O при повышении температуры значительно снижается. Если, при температуре 100°С значение этого свойства воды в состоянии насыщения равно 282,5·10 -6 Па·с, то при температуре, равной, например 370°С, динамическая вязкость снижается до величины 56,9·10 -6 Па·с.

Другие свойства воды такие, как плотность, теплопроводность, удельная теплоемкость, температуропроводность при росте ее температуры имеют тенденцию к снижению своих значений. Например, плотность воды уменьшается с 958,4 до 450,5 кг/м 3 при нагревании со 100 до 370°С.

Относительная плотность газа — что это за величина

При изучении свойств газообразных веществ используют множество параметров. Одной из наиболее важных характеристик газов является их плотность.

Рассматриваемую величину обозначают с помощью греческой буквы ρ или латинских D и d. Единицей измерения плотности в системе СИ принято считать кгм3, а в СГС—гсм3. Плотность газа при нормальных условиях является справочной величиной.

К примеру, при нормальных условиях диоксид углерода СО2 в объеме 1 л обладает массой 1,98 г, а водород в том же объеме и при тех же условиях — массой 0,09 г. Таким образом, плотность диоксида углерода по водороду составит: 1,98 / 0,09 = 22.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector