Период выведения и время полураспада лекарств
Содержание:
- Тетрациклины
- Как работают вакцины на основе аденовирусного вектора
- Литература
- Второй класс препаратов — блокаторы рецепторов ангиотензина II
- Оценить уравнения
- Биологические барьеры организма
- Информация о межлекарственном взаимодействии в листках-вкладышах, зарегистрированных FDA
- Следуя инструкции: общая информация
- Период полувыведения
- РААС: основа основ
- Первый класс препаратов — ингибиторы АПФ
- Переносимость сартанов
- Макролиды
- Выведение лекарств из организма
Тетрациклины
Общие черты фармакокинетики препаратов этой группы выглядит следующим образом :
- Биодоступность доксициклина составляет 90–100 % и практически не зависит от приема пищи, тетрациклина — 75 % натощак и около 37 % при приеме с пищей. Соответственно, тетрациклин нужно принимать натощак;
- Все тетрациклины связываются и инактивируются двухвалентными катионами, в том числе кальцием и магнием. Поэтому совместный прием антибиотиков этой группы и препаратов кальция или магния влияет на эффективность тетрациклинов. Чтобы избежать лекарственных взаимодействий, антимикробные препараты нужно принимать натощак;
- Распределяются во многих органах и тканях. Доксициклин по сравнению с тетрациклином создает более высокие тканевые концентрации;
- Проникают через плацентарный барьер и в грудное молоко в высоких концентрациях. Противопоказаны при беременности и лактации;
- Метаболизируются в печени;
- Тетрациклин выводится преимущественно почками, поэтому при почечной недостаточности необходима коррекция дозы. Доксициклин выводится почками и через ЖКТ, причем при поражении почек пищеварительный путь выведения становится основным;
- Период полувыведения доксициклина в два раза выше по сравнению с тетрациклином — 15–24 часа и 8 часов, соответственно.
Как работают вакцины на основе аденовирусного вектора
«Векторы» являются носителями, которые могут доставить генетический материал из другого вируса в клетку. При этом генетический материал аденовируса, который вызывает инфекцию, удаляется и вставляется материал с кодом белка от другого вируса, в данном случае от шипа коронавируса. Этот новый элемент безопасен для организма, но он помогает иммунной системе реагировать и вырабатывать антитела, которые защищают от инфекции.
Технологическая платформа векторов на основе аденовирусов упрощает и ускоряет создание новых вакцин путем модификации исходного вектора-носителя генетическим материалом из новых появляющихся вирусов, что позволяет получать новые вакцины в сжатые сроки. Такие вакцины вызывают сильный ответ со стороны иммунной системы человека.
Человеческие аденовирусы считаются одними из самых простых для модификации, поэтому они стали очень популярными в качестве векторов.
Литература
- Donald R.A. Uges TIAFT Bulletin of the international Association of Forensic Toxicologist, VOLUME 26 number 1 SUPPLEMENT. 1996.
- Winek C.L. Drug and chemical blood-level data 1994 in Winek»s Toxicological Annual, 1994.
- Donald R.A. Uges, Response to Compilation of Therapeutic Drug Levels, Letter to the Editor, TIAFT Bulletin 1996, 26(1):18-19.
- Jones G. to Compilations of Therapeutic Drug Levels, Letter to the Editor, TIAFT Bulletin 1995; 25 (4) : 15-18.
Перевод на русский язык осуществлен Р.Р.Красновой (Республиканский центр судебно-медицинской экспертизы МЗ и МП РФ, директор проф. Томилин).
Подготовлено к печати Липецким областным бюро судебно-медицинской экспертизы, начальник Флейшер М.Р.
Второй класс препаратов — блокаторы рецепторов ангиотензина II
Исследования, которые были сконцентрированы на изучении возможностей блокады РААС, привели к открытию группы препаратов, лишенных классического недостатка иАПФ — побочного эффекта в виде кашля. БРА, или сартаны, более полно блокируют РААС, за счет чего обеспечивают лучшую переносимость, чем их предшественники. Несмотря на относительно недавнее введение в клиническую практику — сартаны начали использоваться для длительного лечения АГ только в 1999 году, — представители этой группы сегодня стали одними из наиболее популярных антигипертензивных ЛС .
Сартаны: механизм действия и эффект
Фармакологический эффект сартанов идентичен эффекту иАПФ. За счет конкурентной блокады рецепторов ангиотензина II они подавляют вазоконстрикцию, секрецию альдостерона, уменьшают гипертрофию миокарда, а также улучшают функцию эндотелия.
Механизм действия БРА заключается не в блокаде ангиотензинпревращающего фермента, как в случае с иАПФ, а в блокаде рецепторов ангиотензина АТ1, через которые и реализуется подавляющее большинство физиологических эффектов ангиотензина II (вазоконстрикция и так далее). АТ1‑рецепторы расположены преимущественно в гладкой мускулатуре сосудов, сердце, печени, коре надпочечников, почках, легких и мозге.
За последние 10 лет появились препараты, которые некоторые специалисты предлагают выделить в отдельное, второе поколение БРА. Они не только блокируют АТ1‑рецепторы, но и способствуют нормализации обмена углеводов и липидов.
Показания и свойства
Сартаны, так же как и иАПФ, назначают при целом ряде заболеваний, в том числе при артериальной гипертензии, хронической сердечной недостаточности, перенесенном инфаркте миокарда, диабетической нефропатии, фибрилляции предсердий и метаболическом синдроме. Кроме того, БРА становятся препаратами выбора в ситуациях, когда на фоне приема иАПФ развивается кашель .
Доказана эффективность сартанов выраженно снижать артериальное давление и оказывать кардиопротективное действие , а также:
- снижать частоту инфаркта миокарда, инсульта;
- уменьшать частоту госпитализаций по причине хронической сердечной недостаточности;
- уменьшать выраженность симптомов ХСН;
Кроме того, некоторые БРА, так же как и иАПФ, снижают вероятность развития диабета и проявляют нефропротективный эффект.
Оценить уравнения
Устранение первого порядка
Время (t) | Процент от начального значения | Процент завершения |
---|---|---|
t½ | 50% | 50% |
t½ × 2 | 25% | 75% |
t½ × 3 | 12,5% | 87,5% |
t½ × 3,322 | 10,00% | 90,00% |
t½ × 4 | 6,25% | 93,75% |
t½ × 4,322 | 5,00% | 95,00% |
t½ × 5 | 3,125% | 96,875% |
t½ × 6 | 1,5625% | 98,4375% |
t½ × 7 | 0,781% | 99,219% |
t½ × 10 | 0,098% | 99,902% |
Половина времени применяется к процессам, в которых скорость исключения экспоненциальна. Если — концентрация вещества во времени , его зависимость от времени определяется выражением
C(т){\ displaystyle C (t)}т{\ displaystyle t}
- C(т)знак равноC()е-kт{\ Displaystyle С (т) = С (0) е ^ {- kt} \,}
где k — константа скорости реакции . Такая скорость распада возникает в результате которой скорость выведения пропорциональна количеству вещества:
- dCdтзнак равно-kC.{\ displaystyle {\ frac {dC} {dt}} = — kC.}
Период полураспада этого процесса составляет
- т12знак равнопер2k.{\ displaystyle t _ {\ frac {1} {2}} = {\ frac {\ ln 2} {k}}. \,}
В качестве альтернативы период полураспада определяется как
- т12знак равнопер2λz{\ displaystyle t _ {\ frac {1} {2}} = {\ frac {\ ln 2} {\ lambda _ {z}}} \,}
где λ z — наклон конечной фазы кривой время – концентрация для вещества в полулогарифмическом масштабе.
Период полураспада определяется клиренсом (CL) и объемом распределения (V D ), и соотношение описывается следующим уравнением:
- т12знак равнопер2⋅VDCL{\ displaystyle t _ {\ frac {1} {2}} = {\ frac {{\ ln 2} \ cdot {V_ {D}}} {CL}} \,}
В клинической практике это означает, что для достижения стабильного состояния концентрации препарата в сыворотке после начала, остановки или изменения дозы требуется в 4-5 раз больше периода полувыведения. Так, например, дигоксин имеет период полувыведения (или t ½ ) 24–36 часов; это означает, что изменение дозы займет большую часть недели, чтобы добиться полного эффекта. По этой причине препараты с длительным периодом полувыведения (например, амиодарон , время выведения ½ около 58 дней) обычно начинают с ударной дозы для более быстрого достижения желаемого клинического эффекта.
Двухфазный период полураспада
Многие препараты имеют двухфазную кривую выведения — сначала крутой наклон, затем пологий:
- ШАГОВАЯ (начальная) часть кривой -> начальное распределение препарата в организме.
- МАЛЕНЬКАЯ часть кривой -> конечное выведение лекарственного средства, которое зависит от высвобождения лекарственного средства из отделов ткани в кровь.
Более длительный период полураспада называется конечным периодом полураспада, а период полураспада самого большого компонента называется доминирующим периодом полураспада. Более подробное описание см. В разделе « .
Биологические барьеры организма
Большинство препаратов легко преодолевает стенку капилляров. Одни средства проникают через поры путем фильтрации, другие проникают через капиллярную стенку путем диффузии. Некоторые гидрофильные соединения преодолевают капиллярную стенку с помощью транспортных систем.
Гематоэнцефалический барьер является существенным препятствием на пути проникновения лекарств в ЦНС. Капилляры мозга не имеют пор, в них отсутствует пиноцитоз. Кроме того, внешняя поверхность эндотелия сосудов выслана астроглией, что создает дополнительный барьер на пути препаратов в ЦНС. В общем, гидрофильные соединения плохо проникают в мозг, а липофильные — хорошо. Во время воспалительных процессов мозговых оболочек проницаемость ГЭБ увеличивается.
Информация о межлекарственном взаимодействии в листках-вкладышах, зарегистрированных FDA
До 2007 года в инструкциях по применению терапевтических МАТ не содержалось информации о межлекарственных взаимодействиях на уровне цитохрома Р450. Рилонацепт, антагонист ИЛ-1 рецепторов, стал первым модулятором цитокинов, в листке-вкладыше к которому была указана информация о возможности взаимодействий, опосредованных CYP . Несмотря на отсутствие данных о межлекарственных взаимодействиях некоторых модуляторов цитокинов с малыми молекулами, возможность таких взаимодействий не исключается FDA. Например, в инструкциях по применению канакинумаба и рилонацепта (ингибиторов ИЛ1), секукинумаба (ингибитора ИЛ-17А), устекинумаба (анти-ИЛ12/23), ингибиторов ФНО-α инфликсимаба, адалимумаба и голимумаба, одобренных FDA, содержится следующая информация:»Ферменты CYP450 могут подавляться повышенными уровнями цитокинов, например, ФНОα , ИЛ-1, ИЛ-6, ИЛ-10, ИФН, при хроническом воспалении. Следовательно, можно ожидать, что ЛС, которые ингибируют активность цитокинов, могут вызывать нормализацию активности ферментов CYP450. Данный эффект может иметь клиническое значение при применении субстратов CYP450 с узким терапевтическим индексом, дозу которых подбирают индивидуально, например, варфарина, циклоспорина, теофиллина. У пациентов, получающих данные ЛС, должен осуществляться терапевтический мониторинг эффекта или концентрации препарата с коррекцией дозы ЛС при необходимости» .
В инструкциях по применению ингибиторов ИЛ-6, таких как тоцилизумаб, сарилумаб и силтуксимаб, содержится дополнительная информация о необходимости соблюдения осторожности при назначении ЛС, являющихся субстратами CYP3A4, снижение эффективности которых является крайне нежелательным (аторвастатин, симвастатин, ловастатин, блокаторы кальциевых каналов, оральные контрацептивы и др.). При этом подчеркивается, что эффект модуляторов ИЛ-6 на активность ферментов CYP450 может сохраняться в течение нескольких недель после прекращения терапии ГИБП
Следуя инструкции: общая информация
Прежде всего, рассмотрим самые важные фармакокинетические термины, которые используются в основном в отношении антимикробных средств и часто упоминаются в инструкциях по их применению.
Минимальная ингибирующая концентрация (МИК) представляет собой минимальную концентрацию препарата, которая будет блокировать рост патогенного микроорганизма. Очевидно, что содержание антибиотика в инфицированных тканях должно быть выше, чем МИК. И если препарат А имеет более низкую МИК, чем препарат В, то первый будет убивать возбудителя при более низкой концентрации и, следовательно, проявлять более мощный антибактериальный эффект. Разумеется, при условии, что остальные факторы идентичны .
Если уровень МИК препарата для конкретного патогена является низким, последний считается чувствительным к антибиотику. При умеренных значениях МИК чувствительность является промежуточной, а при высоких она отсутствует вовсе, и возбудитель считается устойчивым по отношению к антимикробному средству .
Время, в течение которого концентрация препарата в тканях превышает величину МИК (часто обозначается как Т). Антибиотики некоторых групп, в частности, бета-лактамы (ампициллин, амоксициллин и макролиды, за исключением азитромицина) считаются «время-зависимыми» препаратами. Их эффективность определяет концентрация в крови, которая выявляется в течение 40–50 % от длительности интервала дозирования (как правило, около 5–6 часов) . Можно сказать, что эффективность антибиотиков этой категории зависит от продолжительности действия. Чтобы они работали хорошо, их МИК должна быть постоянно превышена.
При уменьшении рекомендуемой кратности приема время-зависимых антибиотиков их эффективность резко снижается .
Отношение Сmax/МИК — максимальная концентрация антибиотика по сравнению с МИК. Некоторые антибиотики работают только при условии очень высокой максимальной концентрации. Они называются концентрационно -зависимыми. К препаратам этой группы относятся аминогликозиды (канамицин, гентамицин).
Отношение AUC/МИК — еще один параметр, который часто встречается в инструкциях по применению. Он отражает отношение величины площади под кривой «время-концентрация» (AUC, от англ. аrea under curve) к минимальной ингибирующей концентрации. Считается, что именно AUC/МИК является основным фармакокинетическим параметром эффективности. Препараты, мощность которых определяется как продолжительностью действия, так и концентрацией, — фторхинолоны и тетрациклины .
Ну а теперь, вспомнив основные фармакокинетические термины, перейдем к особенностям абсорбции, распределения и выведения современных пероральных антибактериальных ЛС различных групп.
Период полувыведения
Процесс очистки организма от медицинского вещества путем его инактивации называется «элиминацией». Для оценки элиминации используют величину, которая называется «период полувыведения» (Т 1/2). Период элиминации — это время, за которое концентрация в крови уменьшается вдвое в сравнении с фазой равновесного распределения.
Необходимо отметить, что с увеличением дозы препарата выведение его из организма снижается и соответственно возрастает период полувыведения.
Кроме того, для количественной характеристики скорости вывода вещества из организма используют термин «клиренс» (очищение). Он отражает скорость очистки плазмы крови от вещества (например, 10 мл / мин). Различают общий, почечный и печеночный клиренс.
Большинство лекарственных средств несут в организм метаболические изменения. Этот процесс называется биотрансформацией. Суть метаболических превращений заключается в том, чтобы чужеродное, опасное для организма средство превратилось в соединение, которое может быть легко выведено с мочой, желчью или потом. Такие полярные метаболиты плохо растворяются в липидах и имеют низкую способность взаимодействовать с белками плазмы крови и тканей. Метаболиты, как правило, плохо проникают через биологические мембраны и не испытывают реабсорбции в почках и кишечнике.
Метаболизм лекарств в организме
Метаболизм лекарственных средств происходит преимущественно в микросомальном аппарате печени. Некоторые метаболические преобразования определенных лекарств могут происходить в кишечнике, легких, коже и плазме крови. Лишь некоторые препараты выводятся из организма в неизмененном виде.
Известны два базовых вида метаболизма ЛС:
- метаболическую трансформацию (МТ);
- конъюгации.
Окисление — один из самых распространенных путей инактивации лекарств. Окисление последних происходит в печени с участием микросомальных ферментов оксидаз (основной представитель цитохром Р-450). Суть окисления заключается в отщеплении ионов водорода от боковых цепей молекул препаратов. В реакции участвуют НАДФ и кислород.
Восстановление является более редким путем метаболизма лекарств. Реакции восстановления катализируют такие ферментные системы, как нитро- и азоредуктазы и др.
Конъюгации — это реакция присоединения к молекуле ЛС определенного гидрофильного эндогенного метаболита. Эти метаболиты предварительно активируются, образуя макроэргическую связь за счет АТФ. Типичной реакцией конъюгации является присоединение к молекулам препаратов остатков уксусной или глюкуроновой кислот, глутатиона, сульфатов, глицина, метильного остатка и др. Конъюгация может быть единственным путем преобразования лекарственных веществ в организме, или же она происходит после предварительной МТ. В процессе МТ и конъюгации препараты, как правило, теряют биологическую активность.
Некоторые препараты могут подавлять микросомальные ферменты печени (левомицетин, бутадион и др.) или немикросомальные ферменты (антихолинэстеразные средства, ингибиторы МАО и др.). В таких случаях действие лекарств, метаболизм которых происходит при участии соответствующих ферментов, увеличивается. В то же время существуют соединения (фенобарбитал и др.), которые повышают (индуцируют) скорость синтеза микросомальных ферментов.
РААС: основа основ
Прежде чем приступить к описанию препаратов, ненадолго погрузимся в тонкости фармакологии и еще раз вспомним, каков механизм действия ренин-ангиотензин-альдостероновой системы, или РААС.
РААС — сложная гормонально-ферментативная система, в которую вовлечены практически все органы и ткани организма, но ключевые роли в ней принадлежат печени, почкам, надпочечникам и легким.
В печени постоянно синтезируется альфа-2‑глобулин ангиотензиноген. В то же время в почках вырабатывается фермент ренин в ответ на снижение внутрипочечного давления, снижение доставки натрия и хлора, а также на гипоксию. Он поступает, так же как и ангиотензиноген, в системный кровоток, где и связывается с ним с образованием ангиотензина I.
Ангиотензин I — вещество практически инертное. Он не действует на сосуды и является лишь предшественником активного компонента ангиотензина II. В образовании последнего наряду с ангиотензином I участвует ангиотензинпревращающий фермент (АПФ), который вырабатывается в легких.
Ангиотензин II — главное звено схемы РААС. Он проявляет мощный сосудосуживающий эффект и воздействует на органы-мишени, в которых расположены рецепторы к нему. Прежде всего речь идёт об эндотелии, сердце и почках. Вот почему высокий уровень ангиотензина II связан не только с повышением давления, но и с поражением сосудистой стенки, миокарда, почек и с развитием хронической сердечной и почечной недостаточности.
Кроме того, ангиотензин II вызывает усиление синтеза гормона надпочечников альдостерона. Последний участвует в контроле артериального давления (АД), регулируя гомеостаз калия, натрия и объема внутриклеточной жидкости. Под его влиянием повышается давление, увеличивается чувствительность гладких мышц сосудов к сосудосуживающим веществам, в том числе ангиотензину II.
Таким образом, РААС напрямую вовлечена в драму под названием «артериальная гипертензия», играя в ней одну из главных ролей. К счастью, существует возможность заблокировать эту систему. Сделать это позволяют препараты двух фармакологических групп — ингибиторы ангиотензинпревращающего фермента (иАПФ) и блокаторы рецепторов ангиотензина II (БРА, они же сартаны).
Первый класс препаратов — ингибиторы АПФ
Препараты этой группы стали одним из первых классов ЛС, которые эффективно снижают активность РААС, — их разработка началась еще в 60‑х годах прошлого века . Сегодня они входят в категорию так называемых «лекарств, спасающих жизни» (life-saving drugs), в связи с доказанной способностью улучшать прогноз при ряде сердечно-сосудистых и почечных заболеваний .
Ингибиторы АПФ: механизм действия и эффект
Ингибиторы АПФ снижают уровень циркулирующего ангиотензина II за счет блокады ангиотензинпревращающего фермента, что обусловливает комплексный фармакологический эффект:
- антигипертензивный;
- кардиопротективный;
- ангиопротективный;
- антиатеросклеротический;
- противовоспалительный.
При приеме препаратов группы ингибиторы АПФ также улучшается углеводный обмен: повышается чувствительность тканей к инсулину и улучшается метаболизм глюкозы.
Показания и свойства
Спектр активности иАПФ позволяет использовать их при артериальной гипертензии, ишемической болезни сердца, хронической сердечной недостаточности, нефропатиях и остром инфаркте миокарда .
Ингибиторы АПФ относятся к группе антигипертензивных препаратов, которые определенно снижают АД и замедляют прогрессирование сердечной недостаточности, что определяет их широкое применение в кардиологии. Данные обзора с участием 158 998 пациентов с АГ показали, что прием иАПФ позволяет снизить смертность от всех вышеперечисленных причин. Это — существенное преимущество препаратов иАПФ, в том числе и по сравнению с блокаторами ангиотензина II .
Однако иАПФ все‑таки не способны полностью предотвратить превращение ангиотензина I в ангиотензин II, поскольку существует ряд других ферментов, которые успешно «заменяют» АПФ. Именно так работают, к примеру, ферменты химаза, эластаза и катепсин G . При применении иАПФ эти вещества компенсаторно активируются, и блокада РААС становится неполной. Это — существенный недостаток иАПФ.
О чем предупредить клиента?
Важно! Во время консультации уместно подчеркнуть, что препараты, блокирующие активность РААС — иАПФ и БРА, — при постоянном применении наряду с антигипертензивным эффектом защищают сердце и сосуды, достоверно снижая частоту сердечно-сосудистых катастроф. Это маленькое замечание может послужить убедительным аргументом в пользу регулярного и дисциплинированного употребления таких ЛС, согласно инструкции и рекомендациям врача.
Переносимость сартанов
БРА отличаются хорошей переносимостью, в том числе и по сравнению с иАПФ, поскольку не вызывают кашель. Высокий профиль безопасности препаратов этой группы — залог приверженности больных лечению и успешного результата. Побочные эффекты, которые могут возникать при приеме сартанов, обычно мало выражены. Как правило, они носят преходящий характер и редко становятся основанием для отмены лечения.
О чем предупредить клиента?
На фоне приема сартанов очень редко возникают неблагоприятные реакции — по данным исследований, их частота такая же, как при приеме плацебо. Тем не менее зарегистрированы такие побочные эффекты, как головная боль, головокружение и общая слабость. Обычно они проходят сами и не требуют отмены препарата .
В заключение еще раз подчеркнем: иАПФ и БРА доказали и гипотензивный, и кардиопротективный эффект. Подавляющее большинство препаратов этих групп (за исключением фимасартана) сегодня применяется для лечения широкого спектра сердечно-сосудистых заболеваний
Единственное важное условие их эффективности — регулярный, длительный прием и соблюдение всех рекомендаций врача. Напомнив об этом посетителю с рецептом на иАПФ и БРА в конце консультации, первостольник выполнит свой профессиональный долг, приобретет лояльного клиента, а заодно внесет свой вклад в борьбу с одним из самых распространенных заболеваний в мире.
Источники
- Карабаева А. И. и др. Этиология, патогенез, клиническая картина артериальной гипертензии в пожилом возрасте //Вестник Казахского Национального медицинского университета, 2013. № 4.
- Saleem T. S. M., Bharani K., Gauthaman K. ACE inhibitors–angiotensin II receptor antagonists: A useful combination therapy for ischemic heart disease //Open access emergency medicine: OAEM. 2010; 2 (51).
- Abuissa H. et al. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials //Journal of the American College of Cardiology. 2005; 46 (5): 821–826.
- Кузнецов В. И., Стуров Н. В. Применение ингибиторов АПФ и блокаторов рецепторов ангиотензина II (сартанов) в общей врачебной практике //Земский врач, 2010. № 2.
- Васильева А. Д. Блокаторы ангиотензиновых рецепторов в лечении артериальной гипертонии //Русский медицинский журнал, 2007. Т. 15. № 23. С. 1–5.
- Linda L. Herman; Khalid Bashir. Angiotensin Converting Enzyme Inhibitors NCBI (дата обращения 31.07.2019). URL: https://www.ncbi.nlm.nih.gov/books/NBK431051/
- Осадчий К. К., Подзолков В. И. Сердечно сосудистый континуум: могут ли ингибиторы АПФ разорвать «порочный круг»? //Редакционная коллегия, 2008. С. 7.
- Несукай Е. Г. Зофеноприл: ингибитор ангиотензинпревращающего фермента с особыми свойствами //Український кардіологічний журнал, 2013. № 2. С. 97–102.
- Горбунов В. М. Спираприл – современный ингибитор ангиотензинпревращающего фермента //Кардиоваскулярная терапия и профилактика, 2005. Т. 4. № 3 ч I.
- Сычев Д. А.., Муслимова О. В. Органопротективные аспекты хинаприла: фармакогенетические аспекты //Кардиоваскулярная терапия и профилактика, 2011. Т. 10. № 2. С. 98–101.
- Сиренко Ю. Н. Эналаприл в кардиологии и терапии: стандарт эффективности и безопасности среди ингибиторов АПФ //Новости медицины и фармации, 2011. № 13–14. С. 6–8.
- Булдакова Н. Г. Антагонисты рецепторов ангиотензина в клинической практике //Рус. мед. журн., 2008. № 11. С. 1567–1570.
- Бронская Г. М., Коршак Т. А., Казакевич Д. В. Клинико-фармакологическая характеристика блокаторов рецепторов ангиотензина II в лечении артериальной гипертензии и хронической сердечной недостаточности //Проблемы здоровья и экологии, 2009. № 3 (21).
- Чазова A. Е. Возможности нового блокатора рецепторов к ангиотензину II азилсартана медоксомила в лечении артериальной гипертонии у пациентов с метаболическими нарушениями //Системные гипертензии, 2015. Т. 11. № 4. С. 58–61.
- По данным ГРЛС на 01.08.2019.
Макролиды
Несмотря на то, что все макролиды в основе своей химической структуры имеют макроциклическое лактонное кольцо, их свойства, в том числе и фармакокинетические, значительно разнятся. Особенно выделяется в ряду макролидов азитромицин, содержащий дополнительно молекулу азота в макролидном кольце, что придает последнему повышенную устойчивость . Ключевые фармакокинетические свойства марколидов:
- Быстро всасываются из ЖКТ;
- Имеют невысокую биодоступность: кларитромицин и рокситромицин — 50 %, азитромицин — 37 %. Для последнего характерен эффект «первого прохождения» через печень — препарат частично инактивируется еще до поступления в системный кровоток;
- На всасывание некоторых макролидов влияет пища: она существенно снижает биодоступность эритромицина, в меньшей степени азитромицина и практически не влияет на биодоступность кларитромицина и спирамицина, хотя и замедляет их абсорбцию;
- Эритромицин нестабилен в солянокислой среде желудка, поэтому должен вводиться в составе солей, сложных эфиров или в форме таблеток с кишечнорастворимой оболочкой;
- Добавление метильной группы к эритромицину приводит к образованию кларитромицина, а присоединение к тому же эритромицину метилированного азота позволяет получить азитромицин. И кларитромицин, и азитромицин стабильны в солянокислой среде желудка и очень хорошо всасываются при пероральном применении;
- Период полувыведения эритромицина, кларитромицина и азитромицина составляет, соответственно, 1,5 часа, 6 часов и 68 часов. Таким образом, кратность применения эритромицина составляет 4 раза в день, кларитромицина — 2 раза в день, а азитромицина — 1 раз в день. При назначении кларитромицина в больших дозах возможно его применение 1 раз в день;
- Из-за большой продолжительности действия азитромицина 5‑дневный пероральный курс лечения с кратностью применения 1 раз в день считается адекватным при большинстве чувствительных к антибиотику инфекций;
- Все макролиды хорошо проникают в органы и ткани и считаются тканевыми антибиотиками. Пиковая концентрация в сыворотке крови намного ниже, чем в тканях (миндалины, придаточные пазухи носа, легкие, предстательная железа);
- Макролиды проникают внутрь клеток, создавая там высокие концентрации, что позволяет применять их для лечения внутриклеточных инфекций;
- Макролиды не проникают в спинномозговую жидкость. Поэтому их не применяют для лечения инфекций нервной системы;
- Проникают через плаценту и экскретируются в грудное молоко;
- Эритромицин и кларитромицин — важные ингибиторы фермента CYP450. При совместном применении с препаратами, метаболизирующимися в печени при участии ферментов цитохрома P450 (варфарин, другие непрямые антикоагулянты, карбамазепин, теофиллин, циклоспорин, алкалоиды спорыньи и другие), может усиливать эффект последних;
- Азитромицин не является ингибитором ферментов CYP450 и, соответственно, не вступает в лекарственные взаимодействия с препаратами, метаболизирующимися изоферментами цитохрома Р450;
- Выделяются с желчью;
- При почечной недостаточности период полувыведения не меняется, при печеночной — значительно увеличивается. Следовательно, в первом случае терапевтические дозы не корректируются, а во втором — снижаются.
Выведение лекарств из организма
ЛС и их метаболиты выводятся из организма разнообразными путями: с мочой, калом, желчью, секретом потовых, сальных и бронхиальных желез, молоком матери, воздухом, выдыхаемым воздухом.
Базовую роль в экскреции лекарств играют почки. На выведение лекарств влияют фильтрация, канальцевая реабсорбция и секреция. Фильтрации в клубочках нефрона испытывают вода, глюкоза, аминокислоты, белки с молекулярной массой до 60000 и некоторые другие соединения. Не фильтруются фракции препаратов, связанные с белками плазмы. Скорость фильтрации зависит от интенсивности кровообращения в почках.
Выделение лекарств с мочой
Активная секреция лекарственных средств происходит в проксимальных отделах нефрона. Секреция из крови через канальцевый эпителий в первичную мочу происходит с затратой энергии с участием специальных транспортных систем. Секретироваться могут как свободные, так и связанные с белками лекарственные средства. Реабсорбция лекарств происходит в дистальных отделах канальцев. Поскольку пассивная реабсорбция происходит через липидные мембраны канальцевого эпителия, то становится очевидным, что лучше реабсорбируются недиссоциированные липофильные молекулы слабых кислот и щелочей, а также нейтральные соединения. Степень реабсорбции зависит от рН мочи. Так, при кислых рН мочи слабые кислоты (барбитураты, бензодиазепины, сульфаниламиды) мало диссоциированные и легко реабсорбируются в кровь.
Напротив, в кислой среде молекулы слабых оснований (морфин, атропин, хинин и др.) находятся в высокодиссоциированном состоянии и плохо реабсорбируются в кровь, что способствует их выведению из организма. Регуляция рН мочи может быть использована при передозировках и отравлениях. Так, искусственно наполняя мочу с помощью гидрокарбоната натрия, можно повысить скорость вывода лекарств — слабых кислот. При отравлениях алкалоидами, которые по природе слабые основания, мочу необходимо подкислить. Вывод лекарств и различных метаболитов значительно замедляется у пациентов с почечной недостаточностью. Таким пациентам обычно назначают препараты, которые максимально метаболизируется в печени без образования активных метаболитов.
Выделение лекарств с калом
С калом выводятся из организма препараты, которые плохо всасываются в желудочно-кишечном тракте. Такие препараты используют преимущественно для воздействия на микрофлору кишечника или как слабительные средства.
Некоторые препараты (тетрациклин, пенициллины и др.) выделяются с желчью в тонкий кишечник, откуда они могут выводиться с калом или повторно всасываться, а затем снова выделяться в кишечник (так называемая циркуляция по энтеропеченочную кругу).
Другие способы выведения лекарств из организма
- Через легкие выводятся из организма летучие соединения. Этот процесс происходит за счет пассивной диффузии и зависит от частоты и глубины дыхания.
- Некоторые препараты выводятся с секретом желез (потовых, слюнных, желудочных и др.).
- Некоторые алкалоиды и основы могут выделяться в полость желудка, откуда затем всасываются повторно. При отравлении такими средствами проводят многократное промывание желудка, что позволяет удалить из организма определенное количество препарата.
- Вывод с секретом молочных желез (антикоагулянтов, транквилизаторов, цитостатиков и др.) создает опасность неблагоприятного воздействия лекарственных средств на организм ребенка.