Бета-окисление

Таблица 1. НАЗВАНИЯ И ФОРМУЛЫ НЕКОТОРЫХ НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ ЖИРНЫХ КИСЛОТ

Тривиальное название

Рациональное название

Формула

Неразветвленные насыщенные жирные кислоты (CnH2n+1COOH)

Муравьиная

Метановая

HCOOH

Уксусная

Этановая

CH3COOH

Пропионовая

Пропановая

CH3CH2COOH

Масляная

Бутановая

CH3(CH2)2COOH

Валериановая

Пентановая

CH3(CH2)3COOH

Капроновая

Гексановая

CH3(CH2)4COOH

Энантовая

Гептановая

CH3(CH2)5COOH

Каприловая

Октановая

CH3(CH2)6COOH

Пеларгоновая

Нонановая

CH3(CH2)7COOH

Каприновая

Декановая

CH3(CH2)8COOH

Ундекановая

CH3(CH2)9COOH

Лауриновая

Додекановая

CH3(CH2)10COOH

Тридекановая

CH3(CH2)11COOH

Миристиновая

Тетрадекановая

CH3(CH2)12COOH

Пентадекановая

CH3(CH2)13COOH

Пальмитиновая

Гексадекановая

CH3(CH2)14COOH

Маргариновая

Гептадекановая

CH3(CH2)15COOH

Стеариновая

Октадекановая

CH3(CH2)16COOH

Понадекановая

CH3(CH2)17COOH

Арахиновая

Эйкозановая

CH3(CH2)18COOH

Генэйкозановая

CH3(CH2)19COOH

Бегеновая

Докозановая

CH3(CH2)20COOH

Лигноцериновая

Тетракозановая

CH3(CH2)22COOH

Керотиновая

Гексакозановая

CH3(CH2)24COOH

Монтановая

Октакозановая

CH3(CH2)26COOH

Мелиссиновая

Триаконтановая

СН3(СН2)28СООН

Лацериновая

Дотриаконтановая

СН3(СН2)30СООН

Разветвленные насыщенные жирные кислоты (CnH2n-1COOH)

Туберкулостеариновая

10-метилоктадекановая

Фтионовая

3, 13, 19-триметил-трикозановая

Неразветвленные мононенасыщенные жирные кислоты
(CnH2n-1COOH)

Кротоновая

CH3CH=CHCOOH

Капролеиновая

9-деценовая

CH2=CH(CH2)7COOH

Лауролеиновап

Дис-9-додеценовая

СН3СН2СН=СН(СН2)7СООН

Дис-5-додеценовая

СН3(СН2)5СН=СН(СН2)3СООН

Миристолеиновая

Дис-9-тетрадеценовая

СН3(СН2)3СН=СН(СН2)7СООН

Пальм олеиновая

Дис-9-гексадеценовая

СН3(СН2)5СН=СН(СН2)7СООН

Олеиновая

Дис-9-октадеценовая

СН3(СН2)7СН=СН(СН2)7СООН

Элаидиновая

Транс-9-октадеценовая

СН3(СН2)7СН=СН(СН2)7СООН

Петрозелиновая

Цис-6-октадеценовая

СН3(СН2)10СН=СН(СН2)4СООН

Петроселандовая

Транс-6-октадеценовая

СН3(СН2)10СН=СН(СН2)4СООН

Вакценовая

Цис-11-октадеценовая

СН3(СН2)5СН=СН(СН2)9СООН

Гадолеиновая

Дис-9-эйкозеновая

СН3(СН2)9СН=СН(СН2)7СООН

Цетолеиновая

Цис-11-докозеновая

СН3(СН2)9СН=СН(СН2)9СООН

Эруковая

Цис-13-докозеновая

СН3(СН2)7СН=СН(СН2)11СООН

Нервоновая

Цис-15-тетракозеновая

СН3(СН2)7СН=СН(СН2)13СООН

Ксименовая

17-гексакозеновая

СН3(СН2)7СН=СН(СН2)15СООН

Люмекеиновая

21-триаконтеновая

СН3(СН2)7СН=СН(СН2)19СООН

Неразветвленные полиненасыщенные жирные кислоты
(CnH2n-xCOOH)

Линолевая

Дис-9, 12-октадекадиеновая

СН3(СН2)4СН=СНСН2СН=СН(СН2)7СООН

Линэлаидиновая

Транс-9, 12-октадекадиеновая

СН3(СН2)4СН=СНСН2СН=СН(СН2)7СООН

Линоленовая

Цис-9,12,15-октадекатриеновая

СН3СН2СН=СНСН2СН=СНСН2СН=СН(СН2)7СООН

Линоленэлаидиновая

Транс- 9, 12, 15-октадекатриеновая

СН3СН2СН=СНСН2СН=СНСН2СН=СН(СН2)7СООН

альфа-Элеостеариновая

Дис-9, транс-11, 13-октадекатриеновая

СН3(СН2)3СН=СНСН=СНСН=СН(СН2)7СООН

бета-Элеостеариновая

Транс-9, 11, 13-октадекатрие-новая

СН3(СН2)3СН=СНСН=СНСН=СН(СН2)7СООН

гамма-Линоленовая

Дис-9, транс-11, цис-i3-октадекатриеновая

СН3(СН2)4СН=СНСН2СН=СНСН2СН=СН(СН2)4СООН

Пуницивая

Цис-9, транс-11, цис-13-октадекатриеновая

СН3(СН2)3СН=СНСН=СНСН=СН(СН2)7СООН

Гомо-гамма-линоленовая

Цис- 8, 11, 14, 17-эйкозатриеновая

СН3(СН2)7СН=СНСН2СН=СНСН2СН=СН(СН2)3СООН

Арахидоновая

Цис-5, 8, 11, 14-эйкозатетраеновая

СН3(СН2)4СН=СНСН2СН==СНСН2СН=СНСН2СН=СН(СН2)3СООН

Цис-8, 11, 14, 17-эйкозатетраеновая

СН3СН2СН=СНСН2СН=СНСН2СН=СНСН2СН=СН(СН2)6СООН

Тимнодоновая

4, 8, 12, 15, 18-эйкозапен-таеновая

СН3СН=СНСН2СН=СНСН2СН=СН(СН2)2СН=СН(СН2)2СН=СН(СН2)2СООН

Клупанодоновая

4, 8, 12, 15, 19-докозапентаеновая

СН3СН2СН=СН(СН2)2СН==СНСН2СН=СН(СН2)2СН=СН(СН2)2СН=СН(СН2)2СООН

Цис-4, 7, 10, 13, 16, 19-докозагексаеновая

СН3(СН2СН=СН)6(СН2)2СООН

Низиновая

4, 8, 12, 15, 18, 21-тетракозагексаеновая

СН3СН2СН=СНСН2СН=СНСН2СН=СНСН2СН=СН(СН2)2СН=СН(СН2)2СН=СН(СН2)2СООН

Оксипроизводные жирных кислот

Диоксистеариновая

9, 10-Диоксиоктадекановая

СН3(СН2)7СНOHСНOH(СН2)7СООН

Цереброновая

2-Окситетракозановая

СН3(СН2)21СНOHСООН

Рицинолевая

12-Окси-9-октадеценовая

СН3(СН2)5СНOHСН2СН=СН(СН2)7СООН

Оксинервоновая

2-Окси-15-тетракозеновая

СН3(СН2)7СН=СН(СН2)12СНOHСООН

Алициклические жирные кислоты

Гиднокарповая

1 11-(2′- Циклопентенил) — ундекановая

Хаульмугровая

13-(2′-Циклопентенил)-тридекановая

Горликовая

13-(2′-Циклопентенил)-6-тридеценовая

Регуляция[править | править код]

Скорость регуляции процесса β-окисления включает несколько факторов:

  • Соотношений АТФ/АМФ и НАДH/НАД+, так же, как и скорость реакций ЭТЦ и общего пути катаболизма;
  • состояния голодания или сытости (то есть соотношения инсулин — глюкагон);
  • активности регуляторного фермента карнитин-пальмитоилтрансферазы I (CPTI);
  • доступности субстрата — жирных кислот;
  • потребности клетки в энергии;
  • доступности кислорода.

Скорость β-окисления зависит также от активности фермента карнитин-пальмитоилтрансферазы I (CPTI). В печени этот фермент ингибируется малонил-КоА, веществом, образующимся при биосинтезе жирных кислот.

В мышцах карнитин-пальмитоилтрансфераза I (CPTI) также ингибируется малонил-КоА. Хотя мышечная ткань не синтезирует жирные кислоты, в ней имеется изофермент ацетил-КоА-карбоксилазы, синтезирующий малонил-КоА для регуляции β-окисления. Данный изофермент фосфорилируется протеинкиназой А, которая активируется в клетках под действием адреналина, и АМФ-зависимой протеинкиназой и таким образом происходит его ингибирование; концентрация малонил-КоА снижается. Вследствие этого, при физической работе, когда в клетке появляется АМФ, под действием адреналина активируется β-окисление, однако, его скорость зависит ещё и от доступности кислорода. Поэтому β-окисление становится источником энергии для мышц только через 10-20 минут после начала физической нагрузки (так называемые аэробные нагрузки), когда приток кислорода к тканям увеличивается.

Энергетический баланс процесса[править | править код]

В результате переноса электронов по ЭТЦ от ФАДH2 и НАДH синтезируется по 4 молекулы АТФ (1,5 от ФАДH2, и 2,5 от НАДH). В случае окисления пальмитиновой кислоты проходит 7 циклов β-окисления (16/2-1=7), что ведёт к образованию 4•7=28 молекул АТФ. В процессе β-окисления пальмитиновой кислоты образуется 8 молекул ацетил-КоА, каждая из которых при полном сгорании в цикле трикарбоновых кислот даёт 10 молекул АТФ, а 8 молекул дадут 10•8 = 80 молекул АТФ.

Таким образом, всего при полном окислении пальмитиновой кислоты образуется 28+80=108 молекула АТФ. Однако с учётом одной молекулы АТФ, которая гидролизуется до АМФ, то есть тратятся 2 макроэргические связи или две АТФ, в самом начале на процесс активирования (образования пальмитоил-CоА), общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты в условиях животного организма составит 108-2=106 молекул.

Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

C15H31CO−SCoA+7FAD++7NAD++7H2O+7HS−CoA→8CH3CO−SCoA+7FADH2+7NADH{\displaystyle {\mathsf {C_{15}H_{31}CO-SCoA+7FAD^{+}+7NAD^{+}+7H_{2}O+7HS-CoA\rightarrow 8CH_{3}CO-SCoA+7FADH_{2}+7NADH}}}

Формула для расчёта общего количества АТФ которые генерируются в результате процесса β-окисления:

(n2⋅10)+((n2−1)⋅4){\displaystyle {\left}}

где n — количество атомов углерода в молекуле жирной кислоты.

Энергетический расчёт β-окисления для некоторых жирных кислот представлен в виде таблицы.

Жирная кислота Кол-во молекул АТФ генерируемых на 1 молекулу жирной кислоты Кол-во затраченных молекул АТФ Общий энергетический выход молекул АТФ
Каприловая кислота C7H15COOH 44 2 44-2=42
Лауриновая кислота С11Н23COOH 80 2 80-2=78
Миристиновая кислота С13Н27СООН 94 2 94-2=92
Пентадециловая кислота С14Н29СООН 101 2 101-2=99
Пальмитиновая кислота С15Н31СООН 108 2 108-2=106
Маргариновая кислота С16Н33СООН 115 2 115-2=113
Стеариновая кислота С17Н35СООН 122 2 122-2=120
Арахиновая кислота С19Н39СООН 136 2 136-2=134

Во многих тканях окисление жирных кислот — важный источник энергии. Это ткани с высокой активностью ферментов цикла Кребса и цепи переноса электронов — клетки красных скелетных мышц, сердечная мышца (миокард), почки. Например, эритроциты, в которых отсутствуют митохондрии, не могут окислять жирные кислоты. В то же время жирные кислоты не могут служить источником энергии для мозга и других нервных тканей, так как они не проходят через гематоэнцефалический барьер, вследствие их гидрофобных свойств. Скорость обмена жирных кислот в нервных тканях на порядок ниже чем, например, в скелетных мышцах. Поэтому в таких ситуациях, особенно при длительном голодании, печень перерабатывает около 50 % поступающих в неё жирных кислот в другие источники энергии — кетоновые тела, которые может утилизировать нервная ткань.

Частный случай фитановой кислоты

Стадии α-окисления .

Фитановая кислота представляет собой жирную кислоту насыщенный терпеноидный , поэтому разветвленное привел в организм через пищу. Он не может быть разложен непосредственно β-окислением, потому что β-углерод несет метильную группу . Она должна сначала пройти альфа-окисление «укоротить» цепь алифатического один атом из углерода и убедитесь , что группа метила осуществляется с помощью углерода & alpha ; , позволяя β-окисления иметь место.

Phytanoyl-КоА , таким образом , преобразуется в pristanoyl-КоА в пероксисом , где pristanoyl-КоА не может начать разлагаться под действием бета-окисления , чтобы больше не иметь среднюю длину цепи; на этой стадии молекула должна мигрировать в митохондрии, чтобы β-окисление могло продолжаться до полной деградации соединения.

Каждая молекула пристаноил-КоА , полностью разрушенная β-окислением, таким образом, высвобождает три молекулы пропионил-КоА , три молекулы ацетил-КоА и одну молекулу изобутирил-КоА .

Химические свойства

Химические свойства Ж. к. определяются свойствами их COOH-групп и углеводородного радикала. В COOH-группе связь O—H ослаблена за счет смещения электронной плотности в двойной C=O связи к кислороду, и поэтому протон может быть легко отщеплен. Это приводит к появлению стабильного аниона к-ты:

Сродство карбонилового остатка к электронам может быть частично удовлетворено за счет соседней метиленовой группы, водородные атомы к-рой наиболее активны по сравнению с остальными. Константа диссоциации COOH-группы Ж. к. равна 10-4—10-5 М, т. е. ее величина гораздо ниже, чем у неорганических к-т. Наиболее сильной из Ж. к. является муравьиная к-та. COOH-группа Ж. к. обладает способностью реагировать в водных р-рах с щелочноземельными металлами. Соли высших Ж. к. с этими металлами называются мылами (см.). Мыла обладают свойствами поверхностно-активных веществ — детергентов (см.). Натриевые мыла твердые, калиевые — жидкие. Гидроксил COOH-групп Ж. к. может быть легко замещен на галоген с образованием галогенангидридов, которые широко используются в органических синтезах. При замещении галогена остатком другой к-ты образуются ангидриды Ж. к., при замещении остатком спирта — их сложные эфиры, аммиаком — амиды, гидразином — гидразиды. Наиболее распространены в природе сложные эфиры трехосновного спирта глицерина и высших Ж. к. — жиры (см.). Водород альфа-углеродного атома Ж. к. может быть легко замещен галогеном с образованием галогенсодержащих Ж. к. Непредельные Ж. к. могут существовать в виде цис- и транс-изомеров. Большинство природных ненасыщенных Ж. к. имеют цис-конфигурацию (см. Изомерия). Степень ненасыщенности Ж. к. определяют йодометрическим титрованием двойных связей. Процесс превращения ненасыщенных Ж. к. в насыщенные получил название гидрогенизации, обратный процесс— дегидрогенизации (см. Гидрогенизация).

Природные Ж. к. получают путем гидролиза жиров (их омыления) с последующей дробной перегонкой или хроматографическим разделением освободившихся Ж. к. Неприродные Ж. к. получают путем окисления углеводородов; реакция протекает через стадию образования гидроперекисей и кетонов.

Расстройства

Нарушения метаболизма жирных кислот можно описать, например, в терминах гипертриглицеридемии (слишком высокий уровень триглицеридов ) или других типов гиперлипидемии . Они могут быть семейными или приобретенными.

Семейные типы нарушений метаболизма жирных кислот обычно классифицируются как врожденные нарушения липидного обмена . Эти нарушения могут быть описаны как нарушения жирового окисления или нарушения накопления липидов , и представляют собой одну из нескольких врожденных ошибок метаболизма, которые возникают в результате дефектов ферментов, влияющих на способность организма окислять жирные кислоты для выработки энергии в мышцах, печени. , и другие типы клеток .

В митохондриях

Насыщенные жирные кислоты

В митохондриях , то разложение из насыщенных жирных кислот с помощью бета-окисления включает в себя четыре реакции , которые имеют место в митохондриях .

Реакция Фермент Описание
Ацил-КоА дегидрогеназа Дегидрирование с помощью ФАД . Дегидрирование в присутствии FAD катализируемой оксидоредуктазы , то ацил-КоА — дегидрогеназа , происходит между бета и альфа атомов углерода (углероды 2 и 3 в номенклатуре IUPAC ). Существует образование транс-Д 2 -enoyl-КоА в C н .

FADH 2будет окислен в дыхательной цепи с выделением энергии в виде АТФ .

Эноил-КоА гидратаза Увлажнение . Эта реакция присоединения катализируется кротоназой из группы лиаз . Изза близости к кетону группы , то двойная связь поляризуется (β углерод δ +, то углерод α является δ-): группа ОН вода связывается с бетой углерода с образованием L & beta; hydroxyacyl — CoA в C n .

Эта обратимая реакция стереоспецифична и приводит к

L- изомеру .

3-гидроксиацил-КоА дегидрогеназа Окисление с помощью NAD + с образованием бета-кетоацил-СоА в C н .

НАДНО будет окислен в дыхательной цепи с выделением энергии в виде АТФ .

Ацетил-КоА C-ацилтрансфераза Тиолиз . Эта реакция катализируется трансферазой , β-кетотиолазой , в присутствии кофермента А и приводит к образованию:

  • из ацетил-КоА , деградирует в цикле Кребса , в липогенеза , в кетогенеза  ;
  • из ацил-СоА в С п -2 , разлагается бета-окисления согласно итеративного процесса до тех пор , как п > 3 .

Полная деградация жирной кислоты продолжается до тех пор, пока углеродная цепь не будет полностью разрезана на молекулы ацетил-КоА  : это спираль Линена . Каждый виток спирали укорачивает ацил-КоА на два атома углерода и высвобождает одну молекулу ацетил-КоА , одну молекулу FADH 2.и молекула НАДН . Это ухудшение происходит путем окисления на последовательных бета атомов углерода ( гидратации и тиолиза шагов выше), поэтому термин «  β-окисления  ».

С четным числом атомов углерода

Цикл Кребса с глиоксилатным циклом (отсутствует у животных ).

В случае насыщенных жирных кислот с четным числом атомов углерода последний виток спирали Линена приводит к образованию двух молекул ацетил-КоА , одной молекулы FADH 2.и молекула НАДН . Каждый из ацетил-СоА — молекул может быть затем окислен с помощью цикла Кребса или, наоборот , быть использованы для биосинтеза .

С нечетным числом атомов углерода

В случае насыщенных жирных кислот с нечетным числом атомов углерода последний виток спирали Линена приводит к образованию молекулы пропионил-КоА , молекулы ацетил-КоА , молекулы FADH 2.и молекула НАДН .

Пропионил-КоА сначала карбоксилирования с помощью бикарбоната иона HCO 3 под действием пропионил-КоА- карбоксилазы с образованием D- метилмалонил-КоА во время реакции с участием кофактора биотина и гидролиза молекулы АТФ . Метилмалонили-КоА эпимераза дает L -méthylmalonyl-КоА , который превращается в сукциниле-КоА в метилмалониле-КоА мутазов , в фермент , требующий кофактор Аргументы B 12 ( кобаламин ). Сукцинили-КоА является промежуточным продуктом цикла Кребса , именно на этом уровне , что пропионили-КоА обгоняет последний.

Однако сукцинил-КоА не снабжает цикл Кребса окисляемыми атомами углерода, он только увеличивает количество промежуточных продуктов цикла Кребса, присутствующих в клетке. Если они превышают спрос cataplérotique , например , для получения аспартат или глутамата , часть оксалоацетата цикла может быть ориентирована глюконеогенезом с помощью в фосфоенолпирувата по фосфоенолпирувата карбоксикиназе  :

GTP + оксалоацетат → GDP + фосфоенолпируват + CO 2.

Ненасыщенные жирные кислоты

Β-окисление ненасыщенных жирных кислот представляет собой особую проблему из-за возможного присутствия одной или нескольких плохо расположенных двойных связей, препятствующих образованию двойной транс- Δ 2 связи под действием ацил-CoA дегидрогеназы .

Таким образом, додеценоил-КоА- изомераза превращает цис- Δ 3 или транс- Δ 3 связи в транс- Δ 2 связь , которая является ферментативным субстратом для ацил-КоА дегидрогеназы.

Наличие связи Δ 4 не блокирует окисление, которое дает две двойные связи Δ 2 , Δ 4  ; с другой стороны, эта конфигурация блокирует еноил-CoA гидратазу и требует действия 2,4-диеноил-CoA редуктазы для преобразования транс- Δ 2 , транс- Δ 4 или транс- Δ 2 , цис- связей 4 в транс- Δ 2 связи .

Наконец, в случае полиненасыщенных жирных кислот, то Δ 3,5 -Δ 2,4- dienoyl-КоА изомеразы необходимо преобразовать Д 3 , А 5 связей в А 2 , Δ 4 связи , конфигурация которого можно лечить в 2,4-diénoyl-CoA — редуктазы , а затем еноил-СоА — гидратазы.

Бета-этапы окисления

Бета-окисление происходит в четыре этапа: дегидрирование, гидратация, окисление и тиолизис. Каждый шаг катализируется отдельным ферментом.

Вкратце, каждый цикл этого процесса начинается с цепи ацил-КоА и заканчивается одной ацетил-КоА, одним FADH2, одним NADH и водой, и цепь ацил-КоА становится на два атома углерода короче. Общий выход энергии за цикл составляет 17 молекул АТФ (подробности о распаде см. Ниже). Этот цикл повторяется до тех пор, пока не образуются две молекулы ацетил-КоА, в отличие от одного ацил-КоА и одной ацетил-КоА. Четыре стадии бета-окисления описаны ниже, и их можно увидеть в ссылках на рисунки в конце каждого объяснения.

дегидрогенизация

На первом этапе ацил-КоА окисляется ферментом ацил-КоА-дегидрогеназой. Двойная связь образуется между вторым и третьим атомами углерода (С2 и С3) цепи ацил-КоА, входящей в цикл бета-окисления; конечным продуктом этой реакции является транс-2-еноил-КоА (транс-дельта-2-еноил-КоА). На этом этапе используется FAD и вырабатывается FADH2, который входит в цикл лимонной кислоты и образует АТФ для использования в качестве энергии

(Обратите внимание, что на следующем рисунке отсчет углерода начинается с правой стороны: самый правый углерод ниже атома кислорода – это С1, затем С2 слева, образующий двойную связь с С3, и т. Д.)

гидратация

На втором этапе двойная связь между С2 и С3 транс-Δ2-еноил-КоА гидратируется с образованием конечного продукта L-β-гидроксиацил-КоА, который имеет гидроксильная группа (ОН) в С2, вместо двойной связи. Эта реакция катализируется другим ферментом: еноил-КоА-гидратазой. Этот шаг требует воды.

оксидирование

На третьей стадии гидроксильная группа в С2 L-β-гидроксиацил-КоА окисляется NAD + в реакции, которая катализируется 3-гидроксиацил-КоА-дегидрогеназой. Конечными продуктами являются β-кетоацил-КоА и NADH + H. NADH входит в цикл лимонной кислоты и производит АТФ, который будет использоваться в качестве энергии.

тиолиза

Наконец, на четвертом этапе β-кетоацил-КоА расщепляется тиольной группой (SH) другого КоА. молекула (КоА-SH). Фермент, который катализирует эту реакцию, является β-кетотиолазой. Расщепление происходит между С2 и С3; следовательно, конечные продукты представляют собой молекулу ацетил-КоА с исходными двумя первыми атомами углерода (С1 и С2) и цепью ацил-КоА на два атома углерода, которая короче, чем исходная цепь ацил-КоА, которая вступила в цикл бета-окисления.

Конец бета-окисления

В случае четных ацил-СоА-цепей бета-окисление заканчивается после того, как четырехуглеродная ацил-КоА-цепь распадается на две единицы ацетил-КоА, каждая из которых содержит два атома углерода. Молекулы ацетил-КоА вступают в цикл лимонной кислоты с образованием АТФ.

В случае нечетных цепей ацил-СоА бета-окисление происходит таким же образом, за исключением последнего этапа: вместо разрыва четырехцепочечной цепи ацил-КоА на две единицы ацетил-КоА, пятиуглеродный ацил -СоА цепь расщепляется на трехуглеродный пропионил-КоА и двухуглеродный ацетил-КоА. Другая химическая реакция затем превращает пропионил-КоА в сукцинил-КоА (см. Рисунок ниже), который входит в цикл лимонной кислоты с образованием АТФ.

Обмен ненасыщенных жирных кислот

Получены убедительные доказательства, что в печени животных стеариновая к-та может превращаться в олеиновую, а пальмитиновая — в пальмитоолеиновую к-ту. Эти превращения, протекающие в микросомах клетки, требуют наличия молекулярного кислорода, восстановленной системы пиридиновых нуклеотидов и цитохрома b5. В микросомах может также осуществляться превращение мононенасыщенных к-т в диненасыщенные, напр, олеиновой к-ты в 6,9-октадекадиеновую к-ту. Наряду с десатурацией Ж. к. в микросомах протекает и их элонгация, причем оба эти процесса могут сочетаться и повторяться. Таким путем, напр., из олеиновой к-ты образуются нервоновая и 5, 8, 11-эйкозатетраеновая к-ты.

Вместе с тем ткани человека и ряда животных потеряли способность синтезировать некоторые полиненасыщенные к-ты. К ним относятся линолевая (9,12-октадекадиеновая), линоленовая (6,9,12-октадекатриеновая) и арахидоновая (5, 8, 11, 14-эйкозатетраеновая) к-ты. Эти к-ты относят к категории незаменимых Ж. к. При длительном их отсутствии в пище у животных наблюдается отставание в росте, развиваются характерные поражения со стороны кожи и волосяного покрова. Описаны случаи недостаточности незаменимых Ж. к. и у человека. Линолевая и линоленовая к-ты, содержащие соответственно две и три двойные связи, а также родственные им полиненасыщенные Ж. к. (арахидоновая и др.) условно объединены в группу под названием «витамин F».

Биол, роль незаменимых Ж. к. прояснилась в связи с открытием нового класса физиологически активных соединений — простагландинов (см.). Установлено, что арахидоновая к-та и в меньшей степени линолевая являются предшественниками этих соединений.

Ж. к. входят в состав разнообразных липидов: глицеридов, фосфатидов (см.), эфиров холестерина (см.), сфинголипидов (см.) и восков (см.).

Основная пластическая функция Ж. к. сводится к их участию в составе липидов в построении биол, мембран, составляющих скелет животных и растительных клеток. В биол, мембранах обнаружены гл. обр. эфиры следующих Ж. к.: стеариновой, пальмитиновой, олеиновой, линолевой, линоленовой, арахидоновой и докозагексаеновой. Ненасыщенные Ж. к. липидов биол, мембран могут окисляться с образованием липидных перекисей и гидроперекисей — так наз. перекисное окисление ненасыщенных Ж. к.

В организме животных и человека легко образуются лишь ненасыщенные Ж. к. с одной двойной связью (напр., олеиновая к-та). Гораздо медленнее образуются полиненасыщенные Ж. к., большая часть которых поставляется в организм с пищей (эссенциальные Ж. к.). Существуют специальные жировые депо, из которых после гидролиза (липолиза) жиров Ж. к. могут быть мобилизованы на удовлетворение нужд организма.

Экспериментально показано, что питание жирами, содержащими большие количества насыщенных Ж. к., способствует развитию гиперхолестеринемии; применение же с пищей растительных масел, содержащих большие количества ненасыщенных Ж. к., способствует снижению содержания холестерина в крови (см. Жировой обмен).

Наибольшее внимание медицина уделяет ненасыщенным Ж. к

Установлено, что избыточное окисление их по перекисному механизму может играть существенную роль при развитии различных патол, состояний, напр, при радиационных повреждениях, злокачественных новообразованиях, авитаминозе Е, гипероксии, отравлении четыреххлористым углеродом. Один из продуктов перекисного окисления ненасыщенных Ж. к.— липофусцин — накапливается в тканях при старении. Смесь этиловых эфиров ненасыщенных Ж. к., состоящая из олеиновой к-ты (ок. 15%), линолевой к-ты (ок. 15%) и линоленовой к-ты (ок. 57%), так наз. линетол (см.), используется в профилактике и лечении атеросклероза (см.) и наружно — при ожогах и лучевых поражениях кожи.

В клинике наиболее широко применяются методы количественного определения свободных (неэтерифицированных) и эфирносвязанных Ж. к. Методы количественного определения эфирносвязанных Ж. к. основаны на превращении их в соответствующие гидроксамовые к-ты, которые, взаимодействуя с ионами Fe3+, образуют цветные комплексные соли.

В норме в плазме крови содержится от 200 до 450 мг% этерифицированных Ж. к. и от 8 до 20 мг% неэтерифицированных Ж. к. Повышение содержания последних отмечается при диабете, нефрозах, после введения адреналина, при голодании, а также при эмоциональном стрессе. Понижение содержания неэтерифицированных Ж. к. наблюдается при гипотиреозах, при лечении глюкокортикоидами, а также после инъекции инсулина.

Отдельные Ж. к.— см. статьи по их названию (напр., Арахидоновая кислота, Арахиновая кислота, Капроновая кислота, Стеариновая кислота и др.). См. также Жировой обмен, Липиды, Холестериновый обмен.

Выход энергии

Выход АТФ для каждого цикла окисления теоретически составляет максимум 17, поскольку НАДН производит 3 АТФ, ФАДН 2 производит 2 АТФ, а полный оборот ацетил-КоА в цикле лимонной кислоты дает 12 АТФ. На практике это ближе к 14 АТФ для полного цикла окисления, поскольку теоретический выход не достигается — обычно он ближе к 2,5 АТФ на произведенную молекулу НАДН, 1,5 АТФ на каждую продуцируемую молекулу ФАДН 2 , и это соответствует 10 АТФ на цикл TCA (согласно соотношению P / O ) в разбивке следующим образом:

Источник АТФ Общий
1 FADH 2 х 1,5 АТФ = 1,5 АТФ (теоретически 2 АТФ)
1 НАДН х 2,5 АТФ = 2,5 АТФ (теоретически 3 АТФ)
1 ацетил-КоА х 10 АТФ = 10 АТФ (теоретически 12 АТФ)
ОБЩИЙ = 14 АТФ

Для насыщенного жира с четным номером (C 2n ) необходимо n — 1 окислений, и в конечном процессе образуется дополнительный ацетил-КоА. Кроме того, два эквивалента АТФ теряются во время активации жирной кислоты. Следовательно, общий выход АТФ можно выразить как:

(n — 1) * 14 + 10-2 = общий АТФ

или

7н-6 (альтернативно)

Например, выход пальмитата (C 16 , n = 16 ) по АТФ составляет:

7 * 16-6 = 106 АТФ

Представлено в виде таблицы:

Источник АТФ Общий
7 FADH 2 х 1,5 АТФ = 10,5 АТФ
7 НАДН х 2,5 АТФ = 17,5 АТФ
8 ацетил-КоА х 10 АТФ = 80 АТФ
Активация = -2 АТФ
СЕТЬ = 106 АТФ

Для насыщенного жира с нечетным номером (C 2n ) необходимо 0,5 * n — 1,5 окисления, и в конечном процессе образуется дополнительный пальмитоил-КоА, который затем превращается в сукцинил-КоА посредством реакции карбоксилирования и, таким образом, генерирует дополнительные 5 АТФ (1 Однако АТФ расходуется в процессе карбоксилирования, таким образом, генерируя чистые 4 АТФ). Кроме того, два эквивалента АТФ теряются во время активации жирной кислоты. Следовательно, общий выход АТФ можно определить как:

(0,5 n — 1,5) * 14 — 2 = общий АТФ

или

7н-19 (альтернативно)

Например, выход маргариновой кислоты (C 17 , n = 17 ) АТФ составляет:

7 * 17 — 19 = 100

Для источников, которые используют большие количества продукции АТФ, описанные выше, общая сумма будет 129 АТФ = {(8-1) * 17 + 12-2} эквивалентов на пальмитат.

Бета-окисление ненасыщенных жирных кислот изменяет выход АТФ из-за потребности в двух возможных дополнительных ферментах.

Физические свойства

Низшие Ж. к. представляют собой летучие жидкости с резким запахом, средние — масла с неприятным прогорклым запахом, высшие — твердые кристаллические вещества, практически лишенные запаха.

С водой смешиваются во всех отношениях только муравьиная кислота (см.), уксусная кислота (см.) и пропионовая к-та; у более высоких членов ряда Ж. к. растворимость быстро уменьшается и, наконец, становится равной нулю. В спирте и эфире Ж. к. растворимы хорошо.

Температуры плавления в гомологическом ряду Ж. к. возрастают, но неравномерно. Ж. к. с четным числом C-атомов плавятся при более высокой температуре, чем следующие за ними Ж. к., имеющие на один C-атом больше (табл. 2). В обоих этих рядах (с четным и нечетным числом C-атомов) разность температур плавления двух следующих друг за другом членов постепенно уменьшается.

Такое своеобразное различие между Ж. к. с четным и нечетным числом С-атомов в молекуле проявляется не только в температурах плавления, но в нек-рой степени в хим. и даже в их биол, свойствах. Так, Ж. к. с четным числом C-атомов распадаются, по данным Г. Эмбдена, при кровоизлиянии в печени до ацетона, а Ж. к. с нечетным числом C-атомов — не распадаются.

Ж. к. сильно ассоциированы и даже при температурах, превышающих их температуру кипения, показывают вдвое больший мол. вес, чем это следует из их формулы. Эта ассоциация объясняется возникновением водородных связей между отдельными молекулами Ж. к.

Примечания[править | править код]

  1. Строев Е. А. Биологическая химия: Учебник для фармац. ин-тов и фармац. фак. мед. ин-тов. — М.: Высшая школа, 1986. — 479 с.
  2. Е.С. Северин. Биохимия. — М.: ГЭОТАР-МЕД, 2004. — 779 с. — ISBN 5-9231-0254-4.
  3. Березов Т. Т., Коровкин Б. Ф. Биологическая химия. — М.: Медицина, 1998. — 704 с. — ISBN 5-225-02709-1.
  4. ↑ , p. 943.
  5. Knoop, Franz. Der Abbau aromatischer Fettsäuren im Tierkörper (неопр.) // Beitr Chem Physiol Pathol. — 1904. — Т. 6. — С. 150—162.
  6. Voet, Donald; Voet, Judith; Pratt, Charlotte. Fundamentals of Biochemistry Life at the Molecular Level (англ.). — New York City: John Wiley & Sons, Inc., 2013. — P. 582—584. — ISBN 1118129180.
  7. Р.Марри, Д.Греннер, П. Мейес, В. Родуэлл. Биохимия человека. — М.: Мир, 1993. — Т. I. — 384 с. — ISBN 5-03-001774-7.
  8. Нельсон Д., Кокс М. Основы биохимии Ленинджера. — М.: БИНОМ, 2011. — Т. II.
  9. Кольман. Я., Рём К. Г. Наглядная биохимия. — М.: Мир, 2011. — 469 с. — ISBN 5-03-003304-1.
  10. Биологическая химия с упражнениями и задачами / Под ред. С.Е. Северина. — М.: ГЭОТАР-Медиа, 2011. — 624 p. — ISBN 9785970417553.
  11. P. Bowen, C. S. N. Lee, H. U. Zellweger, R. Lindenburg. A familial syndrome of multiple congenital defects. Bulletin of the Johns Hopkins Hospital, 1964; 114: 402.
  12. OMIM
  13. . University of British Columbia (17 ноября 2005).
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector