Влияние возраста и тренировки на скелетные мышцы

Соотношение волокон

У людей, которые не занимаются спортом, как правило, быстрые волокна являются гликолитическими или промежуточными, а медленные – окислительными. Тем не менее при грамотных тренировках быстрые мышечные волокна могут переходить из гликолитических в промежуточные, а из промежуточных в окислительные. Речь идет о развитии выносливости. А при тренировках, нацеленных на развитие силы, промежуточные волокна переходят в гликолитические. При этом соотношение быстрых и медленных мышечных волокон предопределено генетически, поэтому практически не меняется путем тренировки. Возможен переход 1-3%, но не более.

Мускулы обладают разным процентным соотношением белых и красных волокон. Следовательно, скорость сокращения, сила и выносливость разных мышечных групп отличается. К примеру, икроножная мышца содержит больше быстрых волокон, которые придают ей способность к быстрому и сильному сокращению, используемому, например, во время прыжка. Вместе с тем, камбаловидная мышца, соседствующая с икроножной, наоборот, содержит больше медленных волокон, так как она отвечает за длительную активность ног.

Соотношение основных видов волокон мышечной ткани определяет спортивную предрасположенность разных людей. Именно поэтому не существует универсальных атлетов.

Почему мышцы сокращаются

Волокна скелетных мышц соединяются со спинным мозгом посредством толстых нервных волокон. После попадания в мускул каждое из нервных волокон делится на сотни разветвлений, которые снабжают сотни мышечных волокон. Соединение между нервом и волокном мышечной ткани называют синапсом, или нервно-мышечным соединением. Примечательно, что на каждом мышечном волокне может формироваться только один синапс. При соответствующем нервном сигнале возникает потенциал действия, который передается по нервам от спинного мозга к мускулам.

От свойств мышечных волокон зависит то, как мускулатура адаптируется к повторяющимся сигналам. Именно типы волокон обуславливает предрасположенность спортсмена к той или иной тренировочной программе. Во время тренировки происходит гипертрофия мышечных волокон – увеличение их объема и массы

При этом важно понимать, что количество волокон не изменяется и обуславливается генетическими особенностями того или иного человека

ГМВ vs ОМВ

Скорее всего, вы уже слышали о том, что волокна, из которых состоят наши мышцы, бывают двух типов: быстрые (ГМВ) и медленные (ОМВ). Если говорить точнее, существует также третий, промежуточный тип – переходные волокна.

Тип волокна определяется количеством нервных импульсов, посылающихся к волокну. Чем импульсов больше – тем, соответственно, выше активность адезинтрифосфатазы, а также выше скорость сокращения волокна.

Адезинтрифосфатаза – это особые ферменты класса гидролаз, ускоряющие процесс отщепления H3PO4 от молекул аденозинтрифосфата, в результате которого происходит высвобождение энергии, используемой для сокращения мышц.

ГМВ (белые)

Итак, почему же они «белые»? Всё дело в содержащихся в них капиллярах, которых значительно меньше, чем в ОМВ, отсюда и различия в цвете. По своей структуре ГМВ, как правило, в несколько раз толще, чем ОМВ. Их реакция на поступающие из мозга сигналы мгновенна, а скорость сокращения как минимум в два раза выше, чем у окислительных. Энергию гликолитические волокна получают за счет быстроусвояемых АТФ, креатинфосфатов и гликогена. Необходимо понимать, что эти энергетические источники иссякают всего за 30-60 секунд. В процессе получения энергии быстрыми волокнами не участвует кислород, благодаря чему энергия высвобождается практически мгновенно, однако ее запасы сильно ограничены. Исходя из этого, можно сделать вывод, что белые мышечные волокна подходят для высокоинтенсивных, но непродолжительных нагрузок. Однако их энергии не достаточно для выполнения многочисленных повторов и долгих, монотонных движений.

ОМВ (красные)

Они являются полной противоположностью гликолитическим по своему строению и функциям, и буквально созданы для легких и продолжительных нагрузок. Они способны накапливать, запасать энергию, а затем постепенно ее расходовать, благодаря митохондриям и миоглобину. Так что, если в ваших мышцах преобладают ОМВ — из вас вполне может получиться бегун на длинные дистанции, вам также подойдет аэробный спорт.

К сожалению, ОМВ имеют гораздо меньший потенциал в росте своих объемов и количества, чем гликолитические. Так что увеличение нашей мышечной массы в основном происходит за счет ГМВ.

Соотношение ОМВ и ГМВ в нашем организме предопределено генетикой и изменить его мы не в силах. У абсолютного большинства из нас преобладают окислительные волокна; у каждого четвертого – наоборот, процентное соотношение гликолитических волокон немного выше, чем красных. И лишь у некоторых спортсменов преобладание одних мышечных волокон над другими доходит до 85% – именно они обладают самыми высокими шансами добиться наибольших результатов в спорте.

Компоненты сократительной системы

Особенности строения мышечной ткани обусловлены выполняемыми функциями, возможностью принимать и проводить импульсы, способностью к сокращению. Механизм сокращения заключается в согласованной работе ряда элементов: миофибрилл, сократительных белков, митохондрий, миоглобина.

В цитоплазме мышечных клеток имеются особые сократительные нити — миофибриллы, сокращение которых возможно при содружественной работе белков — актина и миозина, а также при участии ионов Са. Митохондрии снабжают все процессы энергией. Также энергетические запасы образуют гликоген и липиды. Миоглобин необходим для связывания O2 и формирование его запаса на период сокращения мышцы, так как во время сокращения идет сдавление кровеносных сосудов и снабжение мышц O2 резко снижается.

Таблица. Соответствие между характеристикой мышечной ткани и ее видом

Вид ткани
Характеристика
Гладкомышечная Входит в состав стенок кровеносных сосудов
Структурная единица – гладкий миоцит
Сокращается медленно, неосознанно
Поперечная исчерченность отсутствует
Скелетная Структурная единица – многоядерное мышечное волокно
Свойственна поперечная исчерченность
Сокращается быстро, осознанно

Скелет и мышцы

Скелет взрослого человека состоит примерно из двухсот костей. На первый взгляд кажется, что он всего лишь создаёт опору для мышц и защиту для внутренних органов.На самом деле, скелет – это сложная конструкция, которая развивалась для преодоления гравитации. В костях хранятся огромные запасы кальция и фосфора. И самое фантастическое: внутри костей в костном мозге создаются элементы крови и иммунной системы.

Человек может двигать головой в разные стороны благодаря особому строению двух первых позвонков. I шейный позвонок называется атлант или atlas. Он назван в честь персонажа древнегреческой мифологии титана Атланта, который держит небо на своих руках. Такое же название получил Атлантический океан. II шейный позвонок (axis) имеет выступ (зуб, dens). Вокруг выступа II позвонка – вращаются атлант и череп.

Вращение атланта

VII шейный позвонок хорошо прощупывается под кожей. Врачи ориентируются на него при осмотре, а портные — при снятии мерок.

Костей черепа гораздо больше, чем это кажется на первый взгляд. В черепе выделяют мозговой и лицевой отделы. К лицевому отделу относятся верхняя и нижняя челюсти, нёбная, скуловая и носовая кости. Остальные составляют мозговой отдел.

Кости черепа связаны между собой особыми плотными соединениями швами. У новорождённых кости черепа ещё не срослись, между ними находятся участки соединительной ткани – роднички. Это необходимо для благополучного рождения. Когда большая голова новорождённого проходит через узкие родовые пути, некоторые кости черепа сближаются и даже налезают друг на друга. Через роднички врач может провести ультразвуковое исследование мозга младенца. В течение первого года жизни роднички зарастают.

Другая особенность черепа ребёнка – преобладание мозгового отдела над лицевым. У него ещё не развиты челюсти и зубы, ведь основной задачей организма до этого было – развить и сохранить мозг.

В черепе находится много образований и отверстий. Например, глазницы и полость носа. Полость носа сообщается с полостью рта, глазницами и околоносовыми пазухами. Пазухи – это пустоты в костях черепа. Они усиливают звук голоса подобно тому, как пустой корпус скрипки усиливает звучание струн. Профессиональные певцы умеют использовать пазухи для создания звуковых эффектов, отчасти поэтому оперным певцам обычно не нужен микрофон. Самые крупные пазухи (гайморовы) находятся в верхней челюсти.

Околоносовые пазухи

Наличие множества сообщений внутри черепа имеет огромное практическое значение. Гнойный процесс из одного отдела черепа может перейти в другой и добраться до мозга. Например, у некоторых людей корни зубов верхней челюсти выходят в гайморову пазуху. Далеко зашедшее поражение зуба может вызвать гнойный гайморит, а из гайморовой пазухи гной способен перейти в глазницу и головной мозг.

Поэтому любое гнойное воспаление в черепе (носовые пазухи, лицо, глаза, зубы, уши) нужно лечить сразу. Очень часто лечение проводится в стационаре, то есть в больнице. Также нужно регулярно посещать стоматолога. Кому-то достаточно проверяться раз в полгода, кто-то лечит зубы постоянно, всё зависит от индивидуальной устойчивости к кариесу.

Череп новорождённого и ультразвуковое исследование мозга

Жевательные мышцы

То, что люди в повседневной жизни называют плечами, на самом деле является поясом верхней конечности, который образован лопатками и ключицей. Плечо – это часть руки от плечевого сустава до локтя.

Скелет верхней конечности

Основные суставы верхней конечности – плечевой, локтевой, лучезапястный. Плечевой сустав позволяет двигать рукой во всех направлениях, совершать круговые движения.

Локтевой сустав образован плечевой, лучевой и локтевой костями. Человек может сгибать и разгибать руку в локтевом суставе благодаря двум основным мышцам – двуглавой мышце плеча (бицепсу) и трёхглавой мышце плеча (трицепсу). Когда бицепс сокращается, трицепс расслабляется и наоборот. Поэтому бицепс и трицепс называют антагонистами.

Мышцы антагонисты

Большинство мышц предплечья длинные и тонкие, с длинными сухожилиями. Вместе с мышцами кисти они управляют движениями пальцев.

Кости, суставы и мышцы нижней конечности – самые мощные. Они противодействуют гравитации и поддерживают тело в вертикальном положении.

Мышцы голени отвечают за движение стопы и пальцев стопы. На стопе тоже есть свои мышцы

Какие типы мышечной ткани встречаются в организме человека?

Типы мышечной ткани В нашем организме встречаются следующие типы мышечных тканей:

  • Гладкая
  • Скелетная
  • Сердечная

Гладкая мышечная ткань есть в составе кожи, стенках наших органов и сосудов, по которым течет кровь. Ее сократительная способность выполняется непроизвольно и достаточно медленно. В отличие от иных, данный вид мышц потребляет малое количество энергии и довольно долго не утомляется.

Поперечно-полосатая скелетная мышечная ткань есть в строении пищевода, в глоточной структуре и в скелете. Контролирование производится человеческим мозгом. У этих мышц высокая сократительная скорость. Данный вид ткани требует много энергии и длительное время на отдых.

Поперечно-полосатая сердечная мышечная ткань является составной частью сердца, осуществляет насосную функцию с помощью клеточных контактов, которые мгновенно передают друг другу импульс, от чего сокращение происходит синхронно. Управляется непроизвольно, способна к автоматизму.

Структура мышц и принципы их работы

Каждая мышца – это не отдельный орган, а часть единой системы. Она состоит из множества взаимосвязанных клеток – миоцитов, они покрыты рыхлой и плотной соединительной тканью – фасцией.

В структуре каждой мышцы выделяют две зоны:

  1. Брюшко.
  2. Сухожилие.

Основная работа выполняется первой частью. Брюшко состоит из миоцитов, которые способны сокращаться. Поэтому функция этой зоны активная, сократительная.

Сухожилие выполняет пассивную работу – это плотная соединительная ткань, с помощью которой мышца прикрепляется к костям или суставам.

Костно-мышечная система человека работает в тесной взаимосвязи. Кости – это не только место прикрепления мышц, но источник кальция для их сокращения.

В свою очередь мышцы во время работы улучшают питание костей, ускоряя кровообращение и обменные процессы в области надкостницы.

Механизм работы мышечных волокон был открыт в середине XX века. Его назвали теорией скользящих нитей.

Сокращение и расслабление регулируется нервными импульсами с помощью ионов кальция и магния.

Магний – это как тормозная жидкость, позволяющая мышечным волокнам в покое не растрачивать энергию.

При прохождении нервного импульса высвобождаются ионы кальция, которые стимулируют сокращение волокон.

Питание осуществляется через тонкие капилляры, которые проходят между волокнами. Там же располагаются нервные пучки, через которые подается сигнал. Источником энергии служит глюкоза или жирные кислоты.

Обязательно также присутствие ионов кислорода. Причем, эти вещества постоянно должны поступать в организм извне. Мышцы не способны накапливать много АТФ. При недостатке энергии быстро начинается их истощение, утомление, накапливается молочная кислота.

Строение мышц человека

Мышечное волокно – это единая клетка, состоящая из нитей разной толщины.

Она многоядерная, но взаимодействуют волокна только на определенном участке. Он называется саркомером и составляет обычно 30% от длины мышцы. Именно на этом участке она сокращается или растягивается. Эластичность обеспечивается белками коллагеном и эластином.

Обязательно прочитайте мою подробнейшую статью про коллаген для суставов. Уверен, вам понравится.

Оболочка мышечных волокон покрыта миофибриллами. От их количества зависит скорость сокращения мышц и их сила. Тренировки приводят к увеличению толщины и количества миофибрилл. При росте их в 2 раза сила мышцы возрастает в 3 раза.

Сами миоциты состоят по большей части из воды, ее в составе мышечных клеток 70-80%. Есть также в них белки, гликоген, минеральные соли. А оболочка, от которой зависит работа волокон, имеет более сложное строение. В ней выделяют несколько веществ:

  • актин – аминокислота, составляющая тонкие нити, отвечает за сокращение;
  • миозин составляет толстые нити, представляет собой полипептидные цепочки из 2 тысяч аминокислот;
  • актиномиозин – комплекс белков, образующийся при их взаимодействии.

Благодаря такому сложному строению каждое мышечное волокно способно выдерживать серьезные нагрузки. Сила мышц зависит от количества миоцитов, а также от входящих в их состав микроэлементов.

Если их клетки не будут получать белки, глюкозу, жирные кислоты и кислород, способность к сокращению снизится, они будут уменьшаться в размерах.

Строение скелетных мышц

Мышечные волокна и соединительная ткань в скелетных мышцах тесно связаны между собой. Каждая мышца окружена особой оболочкой (эпимизий), состоящей из плотной соединительной ткани. Каждая мышца состоит из отдельных пучков волокон (фасцикул), также окруженных собсенной оболочкой (перимизий).

Такие пучки волокон состоят из сотен мышечных фибрилл – мышечных клеток, покрытых оболочкой из соединительной ткани. Внутри каждая мышечная клетка содержит несколько сотен ядер, расположенных по периферии. В длину такая клетка может достигать нескольких см. Обычно мышечные фибриллы располагаются по всей длине мышцы и с двух концов прикрепляются к сухожилиям, которые скрепляют мышцу с костью (отсюда название – скелетные мышцы).

Гладкая мышечная ткань

Медленные и продолжительные сокращения мышц контролирует вегетативная нервная система. Задача таких движений — сохранить или изменить объем полых органов против сил растяжения. Гладкие мышцы сокращаются и растягиваются больше, чем другие типы мышечной ткани. Сокращение длится намного дольше, что связано со скоростью прохождения ионов кальция, регулирующих процесс.

Свойства гладких мышц:

  • сокращаются в 10–20 раз медленнее, чем скелетные;
  • способны к длительным сокращениям;
  • не затрачивают много энергии;
  • медленнее наступает утомление.

Сокращения гладкой мышечной ткани происходят непроизвольно, то есть независимо от воли человека. Сигнал нервной системы проходит через всю массу клеток, что объясняется особенностями иннервации гладкой мускулатуры.

Что такое мышца

Мышца – это орган тела, состоящий из мышечной ткани. Каждая мышца имеет определенную, присущую только ей, форму и функцию. Все виды мышц делят на три группы.

Виды мышечной ткани

Гладкая мускулатура – отвечает за работу внутренних органов. Входит в состав кишечника, мочевого пузыря, желудка, сердечно-сосудистой системы.

Сердечная мышца – обеспечивает кровообращение, находится только в сердце.

Поперечнополосатые (скелетные) мышцы – формируют мускулатуру человека. Рассмотрим этот вид подробно.

Строение скелетной мышцы

К скелету мышца прикреплена через сухожильные концы (сухожилия). Средняя часть скелетной мышцы называется – брюшко.

Брюшко мышцы состоит из мышечных волокон. Мышечное волокно выглядит как длинная нить. Эти нити объединены в пучки.

Каждый мышечный пучок выполняет определенную функцию.

Ремонт повреждений

Взрослые люди не могут регенерировать ткань сердечной мышцы после травмы, что может привести к рубцеванию и, следовательно, к сердечной недостаточности. У млекопитающих есть способность завершить небольшую регенерацию сердца во время развития. Другие позвоночные могут регенерировать ткань сердечной мышцы на протяжении всей своей жизни.

Скелетная мышца способна регенерироваться намного лучше, чем сердечная мышца, благодаря клеткам-сателлитам , которые бездействуют во всех здоровых тканях скелетных мышц. Процесс регенерации состоит из трех этапов. Эти фазы включают воспалительный ответ, активацию, дифференцировку и слияние сателлитных клеток, а также созревание и ремоделирование вновь образованных миофибрилл. Этот процесс начинается с некроза поврежденных мышечных волокон, что, в свою очередь, вызывает воспалительную реакцию. Макрофаги вызывают фагоцитоз клеточного дебриса. В конечном итоге они будут секретировать противовоспалительные цитокины, что приведет к прекращению воспаления. Эти макрофаги также могут способствовать пролиферации и дифференцировке сателлитных клеток. Сателлитные клетки повторно входят в клеточный цикл для размножения. Затем они покидают клеточный цикл, чтобы самообновляться или дифференцироваться в миобласты .

Вы определили свой повторный максимум. Что делать дальше?

Отдохните примерно 10 минут, стараясь не остыть. Для этого накиньте на себя более тёплую одежду, желательно с капюшоном. Просто походите по залу и посмотрите, как тренируются другие. Время от времени делайте различные махи руками и наклоны, чтобы поддержать мышцы в тонусе.

После этой паузы выставьте в том самом упражнении вес, равный в точности 80% от повторного максимума.

А затем технически точно (не слишком медленно, не слишком быстро, но обязательно в полную амплитуду) поднимите его столько раз, сколько сможете, прилагая все возможные усилия. Но не перенапрягаясь до темноты в глазах.

Волокна на наглядном примере

Для того, чтобы полностью разобраться с тем, что же такое ГМВ и ОМВ и как они выглядят — нет ничего лучше, чем увидеть их своими глазами. И сделать это очень просто. Вы едите курятину? Дело в том, что именно куриное мясо как нельзя лучше отображает расположение гликолитических и окислительных волокон в организме птицы. Наверняка многие из вас замечали, что мясо курицы в районе грудки и крыльев — белое, к тому же оно практически не содержит жира, тогда как мясо куриных окорочков и бедер имеет темно-красный окрас и более высокое содержание жира. Всё дело в том, что курица, как и большинство других домашних птиц, практически всё своё время проводит стоя, а значит, мышцы ее ног подвергаются постоянной статической нагрузке (т.е. задействуются окислительные волокна). В то же время крылья используются крайне редко и лишь для быстрых энергичных взмахов, что характеризует работу гликолитических волокон.

Сокращение скелетных мышц человека

Давайте теперь разберемся в механизме сокращения мышцы, точнее в механизме сокращения мышечных волокон, а еще более точно в механизме сокращения миофибрилл или другими словами, в механизме сокращения саркомера. Этот процесс можно условно разделить на несколько этапов.

Чтобы сократиться, мышца должна получить сигнал из центральной нервной системы (ЦНС). Такими сигналами являются импульсы, поступающие по мотонейрону к мышце.

Более подробно строение и функции мышц описаны в моих книгах:

  • Гипертрофия скелетных мышц человека
  • Биомеханика опорно-двигательного аппарата человека

мышцемотонейронамышечным волокнаммышечное волокно

После того, как по аксону мотонейрона к мышечным волокнам приходит импульс, из него в области соединения выделяется ацетилхолин. Выделение этого нейромедиатора (ацетилхолина) приводит к протеканию ряда процессов, в результате которых меняется полярность сарколеммы мышечного волокна. Это называется деполяризацией сарколеммы мышечного волокна. В результате развивается потенциал действия.

Потенциал действия через отверстия в сарколемме «проникает» внутрь мышечного волокна и через Т-трубочки достигает саркоплазматического ретикулума (то есть происходит  деполяризация не только мембраны мышечного волокна, но и мембран Т-трубочек и саркоплазматического ретикулума). Это в конечном счете приводит к выделению из саркоплазматического ретикулума ионов кальция в саркоплазму мышечного волокна (рис. 1).

Рис.1.

Затем ионы кальция соединяются с тропонином (тропонин – один из белков тонкого филамента). Этот белок имеет шарообразную форму и расположен в тонком филаменте регулярно через определенные расстояния. После соединения с ионами кальция, тропонин меняет свою конфигурацию и приподнимает длинные тропомиозиновые трубки. Когда мышца неактивна, длинные трубки белка тропомиозина закрывают активные центры на актине. После того как тропомиозиновые трубки приподнимаются, на актине открываются активные центры. К ним теперь могут прикрепляться миозиновые головки.

Когда миозиновая головка толстого филамента прикрепляется к тонкому филаменту, между толстым и тонким филаментами начинается взаимодействия (говорят: «Образуется поперечный мостик» (рис. 2). При взаимодействии с актином каждая миозиновая молекула ежесекундно расщепляет с выделением энергии до 10 молекул АТФ. За счет энергии, высвобождающейся при расщеплении АТФ, миозиновая головка поворачивается и тянет тонкий филамент в направлении центра саркомера. Это приводит к скольжению толстого и тонкого филаментов относительно друг друга. В конце гребка (поворота) к миозиновой головке присоединяется новая молекула АТФ, что приводит к отделению головки от актина и присоединению её к новому активному участку тонкого филамента. Многократное повторение этого процесса приводит к тому, что расстояние между Z-дисками уменьшается. Следовательно, происходит уменьшение  длины саркомера. Одновременное сокращение всех саркомеров, расположенных последовательно вдоль миофибриллы приводит к уменьшению её длины, длины мышечного волокна и всей мышцы в целом. Мышца работает в преодолевающем режиме.

Прекращение импульсов, поступающих от мотонейрона к мышечному волокну приводит к расслаблению мышцы.

Рис.2. Схема, иллюстрирующая взаимодействие толстого и тонкого филаментов (Л. Страйер, 1985)

Медленные окислительные

Тонкие волокна этого типа хорошо снабжаются кровью и содержат много миоглобина, придающего им красную окраску (поэтому их часто называют красными). Они также отличаются низким порогом активации мотонейрона, медленным сокращением и наличием большого количества крупных митохондрий, которые содержат ферменты окислительного фосфорилирования. Медленные мышечные волокна, по сравнению с быстрыми, содержат больше миозина и меньше фермента аденозинтрифосфатазы (АТФазы). Иннервация медленных окислительных волокон обеспечивается малыми альфа-мотонейронами спинного мозга. Из-за неспешного сокращения такие волокна хорошо приспособлены к длительной нагрузке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector