L-серин лечит рассеянный склероз

Медиаторная функция серина

Серин является предшественником холина и холамина, которые дальше превращаются в нейромедиатор ацетилхолин. В результате комплексного воздействия на организм, серин улучшает мозговую деятельность, участвуя в передаче нервных импульсов в головном мозге, в частности в гипоталамусе.

Входит в активный центр фермента ацетилхолинэстеразы, который разрушает выделившийся из нервной клетки в синапс ацетилхолин, что способствует торможению импульса после его передачи.

 Серин является естественным болеутоляющим.

С возрастом уровень серина в головном мозгу падает, поэтому пожилым людям есть смысл употреблять продукты, богатые этой аминокислотой для улучшения памяти и мозговой деятельности.

Применение аминокислот

Аминокислоты находят широкое применение в медицине и других областях. Различные наборы аминокислоты и гидролизаты белков, обогащенные отдельными аминокислотами, применяются для парентерального питания при операциях, заболеваниях кишечника и нарушениях всасывания. Некоторые аминокислоты оказывают специфический терапевтический эффект при различных расстройствах. Так, метионин применяют при ожирении печени, циррозах и тому подобное; глутаминовая и γ-амино-масляная кислоты дают хороший эффект при некоторых заболеваниях центральной нервной системы (эпилепсии, реактивных состояниях и так далее); гистидин иногда применяют для лечения больных гепатитами, язвенной болезнью желудка и двенадцатиперстной кишки.

Аминокислоты применяют также в качестве добавок к пищевым продуктам. Практически наиболее важны добавки лизина, триптофана и метионина к пищевым продуктам, неполноценным по содержанию этих аминокислот. Добавка глутаминовой к-ты и ее солей к ряду продуктов придает им приятный мясной вкус, что часто используют в кулинарии. Помимо питания человека и применения аминокислоты в пищевой промышленности, их используют для кормления животных, для приготовления культуральных сред в микробиологической промышленности и как реактивы.

См. также Азотистый обмен, Обмен веществ и энергии, Окисление биологическое.

Тестировался ли L-серин в клинических условиях?

   Первое клиническое испытание на людях с использованием L-серина при БАС проводилось также американскими учеными. Оно было направлено, с одной стороны, на тестирование степени безопасности разной дозировки вещества (0,5, 2,5, 7,5 и 15 г) и частоты его приема, с другой – на определение побочных эффектов. В испытаниях принимало участие небольшое количество добровольцев, некоторые из которых получали плацебо. Кроме этого по шкале пересмотренного функционального рейтинга БАС сравнению подвергалось измененное снижение функциональности. Первая фаза клинических испытаний показала безопасность L-серина в любой дозировке. Более того, было установлено, что доза в 15 грамм понизила функциональность радикальным образом – на 85%.

Вторая фаза клинического исследования свойств L-серина проходит сейчас в Медицинском центре Дартмут-Хичкок с целью проверки его эффективности для пациентов с подходящим заболеванием.

Вхождение

( S ) -серин (слева) и ( R ) -серин (справа) в цвиттерионной форме при нейтральном pH

Это соединение является одной из встречающихся в природе протеиногенных аминокислот . Только L — стереоизомер естественным образом появляется в белках. Он не является обязательным для рациона человека, так как синтезируется в организме из других метаболитов , включая глицин . Серин был впервые получен из протеина шелка , особенно богатого его источника, в 1865 году Эмилем Крамером. Его название происходит от латинского шелка, sericum . Структура серина была установлена ​​в 1902 году. Источники пищи с высоким содержанием L- серина среди белков включают яйца, эдамаме, баранину, печень, свинину, лосось, сардины, водоросли, тофу.

Дефицит и передозировки

Как убеждают исследователи, получаемый из пищи серин не всасывается организмом в той же форме. При достаточном количестве витамина В6 и здоровой микрофлоре кишечника, эта аминокислота превращается в глицин. Но при употреблении большого количества серина возможно возникновение неприятных побочных эффектов: начиная от аллергии и истощения запасов адреналина до образования опухолей.

Фармакологическая индустрия предлагает серин в виде биодобавок. Но злоупотребление этими препаратами может вызвать побочные действия: расстройство желудка, тошноту, бессонницу. Чрезвычайное повышение рекомендуемых суточных норм может привести к подавлению иммунной системы, аллергии, а также каталепсии (замирание тела в определенной позе). В некоторых случаях высокие дозы вещества могут нарушить свертывание крови у лиц с больным сердцем и повышенным холестерином, вызвать гиперактивность, аномально высокий гемоглобин и повышенный уровень глюкозы. Но как утверждает большинство медиков, есть не так много людей, которые на самом деле нуждаются в дополнительном введении серина в виде биодобавок.

В то же время дефицит серина может послужить причиной синдрома хронической усталости или фибромиалгии. Но, как убеждают диетологи дефицит естественного серина возможен только в исключительных случаях. Причиной этому служит наследственное заболевание, которое делает невозможным биосинтез L-сирина. Также нехватка аминокислоты может развиться у детей. Симптомами дефицита могут стать судороги и психомоторная отсталость. Недостаток триптофана и серотонина у взрослых проявляется, как правило, бессонницей, депрессией, синдромом хронической усталости, болями в тканях, окружающих суставы, снижением работоспособности и развитием болезни Альцгеймера.

Почему японцы с острова Окинава не болеют БАС?

Самое большое количество долгожителей на душу населения Всемирная организация здравоохранения насчитала в японской деревне Огими на острове Окинава. Из четырех тысяч жителей этой отдаленной деревушки 600 являются долгожителями в возрасте от 80 лет до более века. Им не досаждают ни болезнь Альцгеймера, ни инсульт, ни рак. Существует несколько объяснений феномена долголетия японских стариков и старушек (а последние составляют 90% селян). Это постоянная физическая нагрузка, тесные родственные связи, позитивные эмоции, особый рацион питания. В него, в частности, входят водоросли умибодо («морской виноград») и соя, в составе которой серина больше в 3-4 раза, чем в рационе американцев. Получается, что постоянное пополнение организма этой аминокислотой не только продлевает жизнь, но и делает ее здоровой,

Метилентетрагидрофолатредуктаза

МТНFR (метилен) – внутриклеточный фермент, участвующий в превращении гомоцистеина в метионин в присутствии кофакторов – пиридоксина (витамина В6) и цианокобаламина (витамина В12) – и субстрата – фолиевой кислоты. Активность фермента может снижаться в результате нуклеотидных замен в кодирующем его гене. Вследствие этого нарушается метаболический путь превращения гомоцистеина и его содержание в плазме крови увеличивается.

Метилентетрагидрофолатредуктаза (MTHFR) является ферментом, ограничивающим скорость,  в метильном цикле и кодируется геном MTHFR. Метилентетрагидрофолатредуктаза катализирует превращение 5,10-метилентетрагидрофолата в 5-метилтетрагидрофолат, вещество для ремилирования гомоцистеина в метионин. Естественная вариабельность этого гена распространена у здоровых людей. Хотя сообщалось, что некоторые варианты влияют на восприимчивость к окклюзионным сосудистым заболеваниям, дефектам нервной трубки, болезни Альцгеймера и другим формам деменции, рака толстой кишки и острой лейкемии, результаты небольших ранних исследований не были воспроизведены. Некоторые мутации в этом гене связаны с дефицитом метилентетрагидрофолатредуктазы.

В метиловом цикле MTHFR необратимо восстанавливает 5,10-метилентетрагидрофолат (субстрат) до 5-метилтетрагидрофолата (продукт). 

5,10-метилентетрагидрофолат используется для превращения dUMP в dTMP для синтеза de novo тимидина. 

5-Метилтетрагидрофолат используется для превращения гомоцистеина (потенциально токсичной аминокислоты) в метионин ферментом метионин-синтазой

(Обратите внимание, что гомоцистеин также может быть превращен в метионин не зависящим от фолата ферментом бетаин-гомоцистеин метилтрансферазой (BHMT)). MTHFR содержит связанный флавин-кофактор и использует NAD (P) H в качестве восстановителя

Активность MTHFR может ингибироваться связыванием дигидрофолата (DHF) и S-аденозилметионина (SAM или AdoMet). MTHFR также может быть фосфорилирован — это уменьшает его активность на ~ 20% и облегчает его ингибирование SAMом.

Среди всех известных генетических причин гипергомоцистеинемии наиболее распространены замены в гене MTHFR. Известно около десяти вариантов этого гена, влияющих на изменение функции кодируемого им фермента.

Самым изученным является вариант, в котором цитозин (С) в позиции 677 заменен на тимин (T). Такой полиморфизм MTHFR обозначается как C677Т SNP (Ala222Val) и сопровождается повышением уровня гомоцистеина в крови.

Другим вариантом полиморфизма гена MTHFR является замена нуклеотида аденина (A) на цитозин (С) в позиции 1298, приводящая к изменению структуры фермента, в котором глутаминовая кислота в позиции 429 меняется на аланин. Данная замена приводит к снижению активности фермента, более выраженному у носителей двух аллелей 1298С (генотип С/С). Биохимические характеристики измененного фермента не отличаются от свойств фермента дикого типа (неизмененного).

Комбинация генотипов 677 С/T и 1298 А/C сопровождается не только снижением активности фермента, но и повышением концентрации гомоцистеина в плазме и снижением уровня фолата, как это бывает при носительстве двух аллелей 677T. Кроме того, эта комбинация увеличивает вероятность дефектов нервной трубки у плода. Дефицит MTHFR способствует тератогенному (повреждающему плод) и мутагенному (повреждающему ДНК) действию из-за нарушения процессов метилирования ДНК.

Увеличение концентрации гомоцистеина повышает риск атеросклероза и тромбоза. Накапливаясь в организме, гомоцистеин повреждает внутреннюю стенку артерий, что приводит к разрывам эндотелия. На поврежденную поверхность осаждаются холестерин и кальций, образуя атеросклеротическую бляшку, вследствие чего просвет сосуда сужается, а иногда закупоривается.

В исследованиях был подтвержден протективный эффект присутствия аллеля 1298С при врожденных пороках сердца. Поскольку фермент MTHFR участвует в процессе синтеза нейромедиаторов (серотонина, мелатонина, дофамина, адреналина и др.), изменения функции белка могут влиять на умственную, эмоциональную и физическую деятельность.

Польза для организма

Полезные свойства:

  • необходим для жирового обмена;
  • участвует в накоплении гликогена печенью и мышцами;
  • является источником клеточной энергии, превращается в глюкозу при тяжелых физических нагрузках;
  • участвует не только в синтезе важных ферментов и аминокислот, но также соединений (пурин, креатин, порфирин);
  • регулирует уровень кортизола;
  • участвует в формировании нервных волокон;
  • отвечает за передачу нервных импульсов в головной мозг, содержится в протеинах мозга;
  • улучшает мозговую деятельность, поскольку оказывает стимулирующее действие;
  • способствует росту мышечной массы и сжиганию жиров;
  • ускоряет восстановление организма после физических нагрузок;
  • укрепляет иммунитет (советую почитать статью о том, какие витамины необходимы для укрепления иммунитета);
  • улучшает работу ЖКТ и усвояемость витаминов;
  • предупреждает преждевременное старение клеток.

Доклинические и клинические исследования серина, относящиеся как к шизофрении, так и к депрессии, показывают, что он может быть эффективен в снижении когнитивной дисфункции (4). В дополнение к этой роли серин недавно был замечен в предупреждении рака молочной железы и других опухолей (5).

Биологическая функция

Метаболический

Синтез цистеина из серина. Цистатионин-бета-синтаза катализирует верхнюю реакцию, а цистатионин-гамма-лиаза катализирует нижнюю реакцию.

Серин играет важную роль в обмене веществ в том , что он участвует в биосинтезе из пуринов и пиримидинов . Он является предшественником нескольких аминокислот, включая глицин и цистеин , а также триптофана в бактериях. Он также является предшественником множества других метаболитов, включая сфинголипиды и фолат , который является основным донором одноуглеродных фрагментов в биосинтезе.

Структурная роль

Серин играет важную роль в каталитической функции многих ферментов . Было показано, что это происходит в активных центрах химотрипсина , трипсина и многих других ферментов. Так называемые нервно — паралитические газы и многие вещества, используемые в инсектицидах , действуют путем объединения с остатком серина в активном центре ацетилхолинэстеразы , полностью подавляя фермент.

Сериновые боковые цепи часто связаны водородными связями; наиболее частыми образующимися небольшими мотивами являются ST-повороты , ST-мотивы (часто в начале альфа-спиралей) и ST-скобки (обычно в середине альфа-спиралей).

В качестве составной части (остатка) белков его боковая цепь может подвергаться гликозилированию с О- связью , что может быть функционально связано с диабетом .

Это один из трех аминокислотных остатков, которые обычно фосфорилированных с помощью киназ в ходе клеточной сигнализации в эукариот . Остатки фосфорилированного серина часто называют фосфосерином .

Сериновые протеазы являются распространенным типом протеаз.

Сигнализация

D- серин, синтезируемый в нейронах сериновой рацемазой из L- серина (его энантиомера ), служит нейромодулятором, коактивируя рецепторы NMDA , делая их способными открываться, если они затем связывают глутамат . D -serine является сильным агонистом на глицин сайте (NR1) от рецептора NMDA — типа глутамата (NMDAR). Чтобы рецептор открылся, с ним должны связываться глутамат и либо глицин, либо D- серин; кроме того, блокатор пор не должен связываться (например, Mg 2+ или Zn 2+ ). Фактически, D- серин является более сильным агонистом глицинового сайта NMDAR, чем сам глицин.

До относительно недавнего времени считалось, что D- серин существует только у бактерий; это была вторая D- аминокислота, которая, как было обнаружено, естественным образом существует у людей и присутствует в мозге как сигнальная молекула, вскоре после открытия D- аспартата . Если бы D- аминокислоты были обнаружены у людей раньше, сайт глицина на рецепторе NMDA мог бы вместо этого называться сайтом D- серина. Помимо центральной нервной системы, D- серин играет сигнальную роль в периферических тканях и органах, таких как хрящи, почки и пещеристые тела.

Вкусовые ощущения

L- серин сладкий с незначительным вкусом умами и кислым при высокой концентрации.

Чистый D- серин — это не совсем белый кристаллический порошок с очень слабым затхлым ароматом. D- серин сладкий с добавлением небольшой кислинки при средних и высоких концентрациях.

Серин в пище

Серин принадлежит к числу аминокислот, которые здоровый организм способен продуцировать самостоятельно.

Меж тем, соблюдение сбалансированной диеты – залог того, что человек не столкнется с проблемой дефицита аминокислот. Ежедневное потребление правильных продуктов позволяет организму синтезировать необходимое количество всех аминокислот, поддерживать их на оптимальном уровне, необходимом для выполнения всех жизненно важных функций организма.

Присутствие фолиевой кислоты и витаминов В3 и В6 имеет важное значение в процессе производства серина. Комбинация из этих элементов есть в арахисе, соевых продуктах, молоке, мясе и пшеничной клейковине

С другой стороны, придерживаясь рациона, составленного из большого количества обработанных продуктов, наоборот, можно вызвать недостаток аминокислоты. Высокая концентрация серина есть в плавленом сыре, мясе, рыбе, яйцах, молоке, кумысе, твердых сортах сыра и твороге, а также в сое, каштанах, орехах, цветной капусте, кукурузе и пшенице.

Таблица содержания серина в продуктах питания
Название продукта (100 г) Содержание серина (мг)
Яичный белок 6079
Целые яйца 3523
Соевые бобы 2120
Швейцарский сыр 1640
Фасоль 1428
Бекон 1408
Чечевица 1290
Арахис 1270
Индейка 1198
Зародыши пшеницы 1102
Миндаль 1010
Семена кунжута, льна 970
Орехи грецкие 930
Оленина, свинина 900
Говядина 870
Рыба (лосось) 810
Морепродукты 800
Курица 680

Серин имеет важное значение для общего физического и психического здоровья. Эта аминокислота крайне необходима для правильного функционирования мозга и всей центральной нервной системы

Серин способствует синтезу РНК и ДНК, метаболизму жиров и жирных кислот, поглощению креатина, от которого зависит здоровье и крепость мышц (в том числе и сердечной). Помимо всего перечисленного, серин помогает удерживать влагу в организме. Эта способность не могла остаться незамеченной косметологической индустрией. Поэтому многие средства для ухода за кожей в качестве увлажняющего агента содержат в себе эту аминокислоту.

Больше свежей и актуальной информации о здоровье на нашем канале в Telegram. Подписывайтесь: https://t.me/foodandhealthru

Автор статьи:

Тедеева Мадина Елкановна

Специальность: терапевт, врач-рентгенолог, диетолог.

Общий стаж: 20 лет.

Место работы: ООО “СЛ Медикал Груп” г. Майкоп.

Образование: 1990-1996, Северо-Осетинская государственная медицинская академия.

Другие статьи автора

Будем признательны, если воспользуетесь кнопочками:

Происшествие [ править ]

( S ) -серин (слева) и ( R ) -серин (справа) в цвиттерионной форме при нейтральном pH

Это соединение является одной из встречающихся в природе протеиногенных аминокислот . Только L — стереоизомер естественным образом появляется в белках. Он не является обязательным для рациона человека, так как синтезируется в организме из других метаболитов , включая глицин . Серин был впервые получен из протеина шелка , особенно богатого его источника, в 1865 году Эмилем Крамером. Его название происходит от латинского слова « шелк», sericum . Структура серина была установлена ​​в 1902 году. Источники питания с высоким содержанием L-Серин, содержащийся в их белках, включает яйца, эдамаме, баранину, печень, свинину, лосось, сардины, водоросли, тофу.

Вхождение

(S) -Серин (слева) и (р) -серин (справа) в цвиттерионной форме при нейтральном pH

Это соединение является одним из встречающихся в природе протеиногенные аминокислоты. Только L-стереоизомер естественно появляется в белках

это не важно к рациону человека, так как синтезируется в организме из других метаболиты, в том числе глицин. Серин впервые был получен из шелк белок, особенно богатый источник, в 1865 году Эмилем Крамером

Его название происходит от латинский для шелка, сыворотка. Структура Серина была основана в 1902 году. Источники питания с высоким L-Серин, содержащийся в их белках, включает яйца, эдамаме, баранину, печень, свинину, лосось, сардины, водоросли, тофу.

Типы

Типы включают те, которые действуют непосредственно как рецепторы ( рецепторный белок серин / треонинкиназа ) и внутриклеточные сигнальные пептиды и белки . К типам последних относятся:

Номер ЕС Имя Описание
СК2, также известный под неправильным названием казеинкиназа 2 был открыт в 1954 году Бернеттом и Кеннеди.
Протеинкиназа А состоит из двух доменов: небольшого домена с несколькими β-листовыми структурами и большого домена, содержащего несколько α-спиралей . Сайты связывания субстрата и АТФ расположены в каталитической щели между доменами (или долями). Когда АТФ и субстрат связываются, две доли вращаются таким образом, что конечная фосфатная группа АТФ и целевая аминокислота субстрата перемещаются в правильные положения для каталитической реакции.
Протеинкиназа C (PKC) фактически представляет собой семейство протеинкиназ, состоящее из ~ 10 изоферментов . Они делятся на три подсемейства: обычные (или классические), новые и нетипичные, в зависимости от их требований к вторичному мессенджеру.
Киназы Mos / Raf являются частью семейства киназ MAPKK и активируются факторами роста. Фермент действует, чтобы стимулировать рост клеток. Ингибирование Raf стало мишенью для новых антиметастатических противораковых препаратов, поскольку они ингибируют каскад MAPK и уменьшают пролиферацию клеток.
Митоген-активированные протеинкиназы (MAPK) реагируют на внеклеточные стимулы (митогены) и регулируют различные клеточные активности, такие как экспрессия генов, митоз, дифференцировка и выживаемость / апоптоз клеток.
Ca2 + / кальмодулин-зависимые протеинкиназы или CaM-киназы (CAMK) в первую очередь регулируются комплексом Ca 2+ / кальмодулин .
Киназа фосфорилазы фактически была первой обнаруженной протеинкиназой Ser / Thr (в 1959 году Krebs et al. ).
Протеинкиназа B, также известная как киназа AKT V-Akt ген был идентифицирован как онкоген из ретровируса AKT8. Ген кодирует протеинкиназу. Человеческие гомологи онкогенного белка AKT8 были идентифицированы в 1987 г. К 1995 г. было обнаружено, что киназы Akt действуют как митоген-активируемые киназы, расположенные ниже рецепторов клеточной поверхности, которые активируют фосфоинозитид-3-киназу . Существуют три гена akt человека. Все три киназы Akt регулируют пролиферацию клеток, а Akt2 особенно важен для действия инсулина в клетках. Основной мишенью киназ Akt является киназа-3 гликогенсинтазы .
Пелле представляет собой серин / треониновые киназы, которые могут фосфорилировать себя, а также Tube и Toll.

Внутриклеточный обмен гомоцистеина.

При невозможности полноценного реметилирования гомоцистеина или его превращения в цистеин, развивается состояние гипергомоцистеинемии.

Гипергомоцистеинемия сама по себе является мультифакториальным процессом, с вовлечением генетических и негенетических аспектов метаболизма гомоцистеина. Нормальное содержание гомоцистеина в плазме крови составляет 5-12 мкмоль/л. Легкой степенью гипергомоцистеинемии считается 15-30 мкмоль/л, средней степенью — 31-100 мкмоль/л. а тяжелой более 100 мкмоль/л.

В течение жизни концентрация гомоцистеина в крови постепенно повышается. До периода полового созревания уровни гомоцистеина у мальчиков и девочек примерно одинаковы (около 5 мкмоль/л). В период полового созревание уровень гомоцистеина повышается до 6-7 мкмоль/л, у мальчиков это повышение более выражено, чем у девочек. У взрослых уровень гомоцистеина колеблется в районе 10-11 мкмоль/мл, у мужчин этот показатель обычно выше, чем у женщин. С возрастом уровень гомоцистеина постепенно возрастает, причем у женщин скорость этого нарастание выше, чем у мужчин. Постепенное нарастание уровня гомоцистеина с возрастом объясняют снижением функции почек, а более высокие уровни гомоцистеина у мужчин — большей мышечной массой.

Уровень гомоцистеина в крови может повышаться по многим причинам. Одним из факторов является повышенное поступление метионина с пищей

Поэтому во время беременности дополнительное назначение метионина в таблетках, до сих пор практикуемое некоторыми врачами, следует проводить с осторожностью и под контролем уровня гомоцистеина. Самыми частыми причинами повышения уровня гомоцистеина являются витаминодефицитные состояния

Особенно чувствителен организм к недостатку фолиевой кислоты и витаминов В6, В12 и В1. Повышенную склонность к гипергомоцистеинемиии имеют курящие. Потребление больших количеств кофе является одним из самых мощных факторов, способствующих повышению уровня гомоцистеина в крови. У лиц, выпивающих более 6 чашек кофе в день, уровень гомоцистеина на 2-3 мкмоль/л выше, чем у не пьющих кофе. Предполагается, что негативное действие кофеина на уровень гомоцистеина связано с изменением функции почек, а с другой стороны, через взаимодействие с витамином В6 (снижая его уровень). Уровень гомоцистеина часто повышается при сидячем образе жизни. Умеренные физические нагрузки способствуют снижению уровня гомоцистеина при гипергомоцистеинемии. Потребление небольших количеств алкоголя может снижать уровень гомоцистеина, а большие количества спиртного способствуют росту гомоцистеина в крови (ингибиция метионин-синтетазы ацетальдегидом, снижение уровня фолатов, витамина В12 и/или В6).

Состав

Структура мономера SHMT похожа у прокариот и эукариот , но в то время как активный фермент является димером у прокариот, фермент существует в виде тетрамера в эукариотических клетках, хотя эволюционная основа этого различия в структуре неизвестна. Однако эволюционный путь, пройденный SHMT от димерной формы прокариот к тетрамерной форме эукариот, можно легко рассматривать как своего рода событие удвоения. Другими словами, тетрамер SHMT эукариот напоминает два прокариотических димера, которые упакованы вместе, образуя то, что было описано как «димер димеров». Было обнаружено, что взаимодействие между двумя мономерами внутри димерной субъединицы происходит на большей площади контакта и, таким образом, намного более плотное, чем взаимодействие между двумя димерами. Серингидроксиметилтрансфераза 2 человека (SHMT2) регулирует одноуглеродные реакции переноса, необходимые для метаболизма аминокислот и нуклеотидов, и недавно было показано , что регулируемое переключение между димерными и тетрамерными формами SHMT2, которое индуцируется пиридоксальфосфатом , участвует в регуляции комплекс деубикутилазы BRISC, связывающий метаболизм с воспалением. Димер SHMT2, но не связанный с PLP тетрамер, является мощным ингибитором мультимерного комплекса BRISC, раскрывая потенциальный механизм регуляции воспаления SHMT2.

Одиночный мономер SHMT можно разделить на три домена: N-концевое «плечо», «большой» домен и «маленький» домен. Плечо N-конца, по-видимому, поддерживает тесное взаимодействие между двумя мономерами. Плечо, состоящее из двух альфа-спиралей и бета-листа , оборачивается вокруг другого мономера в олигомерной форме. «Большой» домен содержит сайт связывания PLP , как это видно в других PLP-зависимых белках, таких как аспартатаминотрансфераза . Большой домен в эукариотической форме также содержит гистидин, который необходим для стабильности тетрамера. Все четыре гистидина этих остатков, по одному от каждого мономера, находятся в центре тетрамерного комплекса, где два гистидина из димерной субъединицы участвуют во взаимодействиях стэкинга с гистидинами другой субъединицы. Прокариотический SHMT имеет остаток пролина, а не гистидин в эквивалентном положении, что частично объясняет, почему прокариотический SHMT не образует тетрамеров.

Структура активного сайта высоко консервативна в эукариотических и прокариотических формах. PLP заякорен с помощью лизина , который образует связь альдиминового основания Шиффа с альдегидом PLP . Было высказано предположение , что соседний тирозина функционирует в качестве протонного донора и акцептора на стадии transadimination, а также формил стадии переноса и что аргинин остаток входит в зацепление с боковой тирозин цепь в катион-π взаимодействия , что помогает снизить рК а , тирозина, снижая барьер для переноса протона.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector