Характеристика мышечных волокон скелетных мышц
Содержание:
Что такое миостимуляция и для чего она нужна?
Изначально метод разрабатывался отнюдь не для красоты. В первую очередь миостимуляция тела способствует повышению мышечного тонуса — именно в этом ее прямое медицинское назначение.
Поэтому ее применяют при ослаблении, вялости, парезах и параличах скелетной мускулатуры для предотвращения ее дистрофии. Это специальная медицинская процедура, призванная ускорять восстановление работоспособности после продолжительных заболеваний, сопряженных с пониженной физической активностью или ее отсутствием.
Но с развитием косметологической индустрии различные аппараты, ранее имевшие чисто медицинское назначение, стали использоваться в эстетических целях. Ведь помимо прямых медицинских эффектов, ради достижения которых эти приборы сконструированы, их применение вызывает улучшение эстетических показателей.
Под действием электрического тока мышцы сокращаются, начиная при этом активно потреблять питательные вещества из близлежащих тканей. В результате мышечных сокращений происходит стимуляция кровеносных и лимфатических сосудов, что влечет за собой глубокий терапевтический эффект. Благодаря такому своеобразному массажу сосудов улучшается тканевая циркуляция жидкостей, усиливается отток лимфы, улучшается кровоснабжение тканей не только в области воздействия, но во всем организме. В результате усиливается метаболизм, расщепляется жировая ткань, уходят отеки, мышцы и кожа приобретают упругость и тонус уже после первой процедуры. Причем стимулированные процедурой эффекты продолжают развиваться еще длительное время после нее. Всего за одну процедуру можно добиться уменьшения объемов тела на 3-4 сантиметра.
Разгон жидкостей в организме приводит к очищению тканей от токсинов и насыщению их питательными веществами и кислородом. Вместе это приводит к улучшению способности кожи к регенерации, повышению ее эластичности, приобретению кожей здорового цвета и структуры.
Показания для проведения миостимуляции
- Для подтяжки слишком «рыхлых» и ослабленных мышц;
- Для проработки внутренних мышц;
- Для расслабления образовавшихся мышечных зажимов;
- Для избавления от целлюлита, а также его профилактики;
- При комплексном похудении;
- Для укрепления каркаса мышц в терапевтических целях, например, при исправлении осанки;
- Для снижения отечности мягких тканей и ускорения лимфооттока.
Волокна на наглядном примере
Для того, чтобы полностью разобраться с тем, что же такое ГМВ и ОМВ и как они выглядят — нет ничего лучше, чем увидеть их своими глазами. И сделать это очень просто. Вы едите курятину? Дело в том, что именно куриное мясо как нельзя лучше отображает расположение гликолитических и окислительных волокон в организме птицы. Наверняка многие из вас замечали, что мясо курицы в районе грудки и крыльев — белое, к тому же оно практически не содержит жира, тогда как мясо куриных окорочков и бедер имеет темно-красный окрас и более высокое содержание жира. Всё дело в том, что курица, как и большинство других домашних птиц, практически всё своё время проводит стоя, а значит, мышцы ее ног подвергаются постоянной статической нагрузке (т.е. задействуются окислительные волокна). В то же время крылья используются крайне редко и лишь для быстрых энергичных взмахов, что характеризует работу гликолитических волокон.
События внутри волокна
Чтобы внешние сигналы могли изменить тип мышечного волокна, они должны влиять на синтез генов MyHC. В активированном мышечном волокне меняются концентрации сигнальных молекул: ионов кальция (Са2+), кислорода, жирных кислот и аденозинмонофосфата (АМР). Эти изменения запускают каскад внутриклеточных процессов. Начинается синтез различных ферментов и факторов транскрипции, которые стимулируют или подавляют работу множества генов, работающих либо в ядрах мышечных волокон, либо в их митохондриях, регулируя энергообмен. Некоторые ферменты влияют на структуру хроматина. Многочисленные белки взаимодействуют друг с другом, а результатом этого молекулярного квеста оказывается синтез факторов транскрипции, которые избирательно регулируют работу специфических «быстрых» или «медленных» генов мышечных волокон. Если определенное внешнее воздействие будет достаточно регулярным и длительным, судьба мышечных волокон переменится: быстрые станут медленными или медленные — быстрыми.
Концентрация сигнальных молекул зависит от характеристик внешнего сигнала, а концентрация определяет их эффект. Следовательно, в клетке должны быть сенсоры, способные эту концентрацию измерить. И такие сенсоры есть (рис. 2).
Рисунок 2. Влияние внешних сигналов на работу генов мышечных волокон (крайне упрощенная схема). Быстрые и медленные сигналы по-разному влияют на концентрацию
Са2+ и клеточных метаболитов в мышечных волокнах, молекулы-сенсоры фиксируют эти изменения и запускают каскад межгенных взаимодействий.
В результате этих взаимодействий происходит синтез и активизация факторов транскрипции, которые регулируют работу генов, кодирующих быстрые и медленные формы миозина.
Обозначения: АМР — аденозинмонофосфат; АМРК — АМР-активируемая киназа; CaMKII — Ca2+-кальмодулин-зависимая протеинкиназа-II;
НРН — пролилгидроксилаза HIF-1α; РКС — протеинкиназа С; PPARδ —фактор транскрипции.
Ca2+ —основной посредник, определяющий влияние нервного импульса на тип мышечного волокна. Быстрый сигнал вызывает в мышцах краткий, но значительный всплеск концентрации кальция, а медленный — более продолжительное повышение концентрации, но в целом весьма умеренное. Ca2+ связывается с белком кальмодулином. При высокой концентрации ионов кальция комплекс «Ca2+-кальмодулин» активирует фермент Ca2+-кальмодулинзависимую протеинкиназу II (CaMKII). Этот фермент активируется и во время физических упражнений. При низкой концентрации Ca2+ кальмодулин взаимодействует с другим ферментом, кальцинейрином, к которому имеет большее сродство. Этот выбор определяет дальнейший путь активации работы генов. Кальцинейрин поддерживает нормальную работу зрелых медленных волокон, он также может быть вовлечен в трансформацию быстрых волокон в медленные. CaMKII, напротив, открывает путь, который активирует быстрые гены и подавляет работу медленных. Изменения в медленном направлении сопровождаются повышенной активностью окислительных ферментов митохондрий. Уровень ферментов гликолиза при этом снижается на 30—60%. Сокращается и размер волокон. Сходные изменения происходят при тренировках на выносливость.
Другой фермент, с которым взаимодействуют ионы кальция, — протеинкиназа С (РКС). Взаимодействие происходит после быстрого сигнала, активация РСК приводит к подавлению синтеза медленного миозина. Есть еще несколько белков, с которыми взаимодействует Ca2+, они прямо или косвенно поддерживают свойства медленных волокон.
Варьирование упражнений
Традиционно бодибилдеры поддерживают мнение, что для максимальной гипертрофии мышц нужно широкое разнообразие вариантов упражнений (36). Предложенное обоснование: такие мышцы, как большая грудная (47) и трапециевидная (7) выполняют разные движения одного и того же сегмента сустава различными функциональным отделами каждой мышцы (6). Таким образом, изменение упражнений направлено на значительные отдельные части мышцы. Например, в случае большой грудной мышцы применение обратного наклона скамьи 15 приводит к большей ЭМГ- активности в грудинных волокнах по сравнению с ключичными волокнами (47). Поэтому для создания перегрузки отдельных частей мышцы необходимо большее разнообразие упражнений, позволяющее рекрутировать и утомить все части мышцы.
Упомянутую выше концепцию можно расширить до мышц с многочисленными волокнами, ориентированными между началом и прикреплением под разными углами. Например, длинную и короткую головку двуглавой мышцы плеча по строению считают веретенообразными (31); в двуглавой мышце плеча нет функционального разделения, как в большой грудной мышце. При изменении положения в плечевом и локтевом суставах в двуглавой мышце плеча проявляется регион-специфичная стратегия активации при супинации (12). Кроме того, при сгибании локтя двуглавая мышца плеча сокращается неравномерно, что указывает на раздельное концентрическое сокращение различных частей с разной скоростью, тем самым регулируется количество работы, производимой каждым мышечным волокном (31).
Также было показано неравномерное рекрутирование мышечных волокон в мышцах задней поверхности бедра, с варьированием ЭМГ- активности между нижними и верхними волокнами, в зависимости от того, сгибается колено или разгибается бедро, преодолевая сопротивление (68). Эти данные подтверждаются в работе Mendez-Villanueva et al (53), использовавших функциональное магнитно-резонансное изображение для демонстрации региональных различий активации каждой головки мышц задней поверхности бедра при выполнении различных упражнений. Аналогичным образом, при разгибаниях локтя с отягощением показаны различия региональной активации мышц в односуставных и многосуставных упражнениях. Например, односуставное упражнение с разгибанием локтя повышало активацию дистальной части трёхглавой мышцы плеча (91). Хроническая адаптация к подобным упражнениям ведёт к большему увеличению поперечника в дистальном регионе мышцы после 12-недельной программы с перегрузкой (91). Сходным образом, Wakahara et al (92) показал, что многосуставное упражнение с разгибанием локтя (жим гантелей лёжа) повышает уровень активации в среднем и проксимальном регионе трёхглавой мышцы плеча, что приводит к большему росту этих областей. Это подтверждает необходимость нагрузки разных частей мышцы (дистальной-проксимальной) с применением различных упражнений для максимальной гипертрофической адаптации.
Fonseca et al. (26) показали, что изменение упражнений в течение 12-недельного периода эффективнее увеличивает силу и массу мышц по сравнению лишь с манипуляцией тренировочной нагрузкой. В рамках этого исследования гипертрофия внутренней широкой и прямой мышц бедра оказалась больше у испытуемых, варьировавших упражнений в трехнедельных циклах, по сравнению с людьми, которые использовали одно и то же упражнение (26). Эти данные подтверждают концепцию применения различных упражнений для полной реализации адаптационной гипертрофии мышц.
Один из возможных механизмов региональных различий в гипертрофии – компартментизация скелетных мышц (6). В пределах нервно-мышечной системы части мышцы иннервируются специфическими двигательными единицами, ответственными за организацию сокращения соответствующих волокон (6). Даже веретенообразные мышечные волокна заканчиваются в пределах сократительных частей (31, 95), что означает возможность существования отдельных нервно-мышечных компартментов в данной мышце. Распределение специфических типов волокон внутри мышцы также специфично региону (47, 83), вероятно, существуют внутримышечные различия в отношении функции. Таким образом, тренировка с отягощениями, направленная на преимущественную гипертрофию быстросокращающихся волокон с применением стратегии эксцентрической тренировки, может привести к неравномерной гипертрофии (обсуждается в следующем разделе). Вполне вероятно, что каждая мышца состоит из нескольких нервно-мышечных компартментов, которые можно выборочно перегружать при помощи разных упражнений.
Внешние воздействия на мышцу
Итак, скелетная поперечно-полосатая мышца. Она состоит из множества миофибрилл — длинных многоядерных мышечных волокон. Их сокращение происходит в результате смещения нитей миозина относительно актина. Различают два основных типа волокон: быстрые и медленные. Быстрые получают энергию в ходе анаэробного гликолиза. Они способны к стремительным сокращениям, однако в процессе гликолиза в них накапливается молочная кислота, а молекул АТФ образуется мало, поэтому быстрые волокна быстро устают. Медленные волокна хорошо снабжаются кровью и кислородом и получают энергию в процессе окислительного фосфорилирования, более эффективного, чем гликолиз. Однако для доставки кислорода требуется время, поэтому ответа медленных мышц на возбуждение приходится подождать. Зато они дольше работают без признаков утомления. У человека скелетные мышцы содержат оба типа волокон, соотношение которых зависит от роли данной мышцы в организме. Мышцы спины, например, ответственные за поддержание позы, содержат главным образом медленные волокна, а мышцы, которые движут глазные яблоки, — быстрые.
Белок миозин состоит из тяжелых и легких цепей. Тяжелые цепи быстрых и медленных волокон (MyHC) отличаются составом и АТФазной активностью (скоростью расщепления АТФ). Кроме того, быстрые и медленные волокна по-разному снабжаются кровью (рис. 1).
Рисунок 1. Свойства разных типов мышечных волокон млекопитающих
Казалось бы, судьба мышечного волокна у взрослой особи уже определена, однако внешние сигналы могут ее изменить. Это свойство называется мышечной пластичностью. Самый известный из таких сигналов — нервный импульс. Если перерезать аксоны, ведущие от двигательных нервов к быстрой и медленной мышцам, и поменять местами, исходно медленная мышца, получавшая сигнал от быстрого нерва, будет сокращаться быстро, а исходно быстрая — медленно. Одно время исследователи предполагали, что быстрые и медленные нервы выделяют разные трофические факторы, но эта гипотеза не подтвердилась. Скорее, дело в том, что по нерву на медленные или быстрые волокна приходят различные электрические сигналы. Есть данные о том, что тип сокращения мышечного волокна зависит от количества сигналов, поступивших за определенное время, и их частоты. Организм чаще использует мышцы, работа которых более энергетически эффективна, то есть медленные.
На мышцу действует не только электрический сигнал, она испытывает механическую нагрузку. Правда, действия двух этих факторов трудно разделить, поскольку электрический импульс вызывает сокращение мышцы и ее механическое напряжение. Тем не менее, воздействие силы само по себе влияет на состояние мышечных волокон. Доказательства копились десятилетиями. Известно, что мышцы ног атрофируются, если конечность долгое время находится в гипсе. Однако, если ногу зафиксировать в вытянутом состоянии, мышцы испытывают механическую нагрузку и атрофируются меньше. Несколько экспериментов показали, что иммобилизация в растянутом положении противодействует атрофии даже в отсутствие нерва.
По некоторым данным, на скорость сокращения влияет длина волокна, так что иммобилизация быстрых мышц в вытянутой, удлиненной позиции, увеличивает долю медленных волокон в ней.
Литература
- Волков Н.И. Биохимия мышечной деятельности / Н.и.Волков, Э.Н. Несен, А.А. Осипенко, С.Н.Корзун. — Киев: Олимпийская литература, 2000.- 503 с.
- Калинский, М.И. Биохимия мышечной деятельности / М.И. Калинский, В.А. Рогозкин. – Киев: Здоровья, 1989.– 144 с.
- Михайлов С.С. Спортивная биохимия. – М.: Советский спорт, 2009.– 348 с.
- Самсонова, А.В. Гипертрофия скелетных мышц человека: Учеб. пособие. 5-е изд. /А.В. Самсонова. – СПб: Кинетика, 2018.– 159 с.
- Самсонова, А. В. Гормоны и гипертрофия скелетных мышц человека: Учеб. пособие. – СПб: Кинетика, 2019.– 204 c.: ил.
- Степанова, М. Анаэробика /М. Степанова, В. Степанов // Легкая атлетика, 2011 № 7-8. С. 24-27.
Темп выполнения повторений
Взрывная силовая тренировка показывает явные преимущества перед медленной концентрической тренировкой в развитии силы (13). По-видимому, это обусловлено большими силами, необходимыми для ускорения в концентрической фазе подъёма с соответствующей нагрузкой. Тем не менее, при попытках развития мышечной массы подобной взаимосвязи нет (69). Вероятно, это связано с увеличением продолжительности подхода и метаболического стресса, вследствие меньшего необходимого усилия при низких скоростях движения. Когда отягощение поднимается с намерением достигнуть высокой скорости, усилия возрастают, повышая мышечное напряжение. В случаях, когда увеличивается продолжительность повторений, нагрузку нужно уменьшить, потому что временной компонент повышает требования к задействованным энергетическим системам (87). Поэтому регулирование темпа повторений – просто ещё один пример обратной зависимости между объёмом и нагрузкой.
Согласно имеющимся данным, различия между медленным и быстрым темпом для мышечной гипертрофии неоднозначны. Tanimoto and Ishii (87) не выявили существенных различий в гипертрофии четырёхглавой мышцы, при сравнении тренировки с высокой нагрузкой в нормальном темпе (одна с концентрическая фаза / одна с эксцентрическая фаза/ одна с расслаблением) и тренировки с низкой нагрузкой в медленном темпе (три с концентрической фазой / три с эксцентрической фазой / одна с расслаблением), если повторения выполнялись до отказа. Кроме того, в недавнем мета-анализе не выявлено существенных различий роста мышц при сравнении режимов в диапазоне 0,5 – 8 с выполнением концентрической фазы подъёма веса (69). Таким образом, регулирование темпа тренировок между тренировочными блоками предоставляет тренерам другую стратегию, которая обеспечивает новый вид перегрузки за счёт увеличения объёма тренировки (при медленных повторениях) или нагрузки (при быстрых повторениях).
Почему мышцы сокращаются
Волокна скелетных мышц соединяются со спинным мозгом посредством толстых нервных волокон. После попадания в мускул каждое из нервных волокон делится на сотни разветвлений, которые снабжают сотни мышечных волокон. Соединение между нервом и волокном мышечной ткани называют синапсом, или нервно-мышечным соединением. Примечательно, что на каждом мышечном волокне может формироваться только один синапс. При соответствующем нервном сигнале возникает потенциал действия, который передается по нервам от спинного мозга к мускулам.
От свойств мышечных волокон зависит то, как мускулатура адаптируется к повторяющимся сигналам. Именно типы волокон обуславливает предрасположенность спортсмена к той или иной тренировочной программе. Во время тренировки происходит гипертрофия мышечных волокон – увеличение их объема и массы
При этом важно понимать, что количество волокон не изменяется и обуславливается генетическими особенностями того или иного человека
ГМВ vs ОМВ
Скорее всего, вы уже слышали о том, что волокна, из которых состоят наши мышцы, бывают двух типов: быстрые (ГМВ) и медленные (ОМВ). Если говорить точнее, существует также третий, промежуточный тип – переходные волокна.
Тип волокна определяется количеством нервных импульсов, посылающихся к волокну. Чем импульсов больше – тем, соответственно, выше активность адезинтрифосфатазы, а также выше скорость сокращения волокна.
Адезинтрифосфатаза – это особые ферменты класса гидролаз, ускоряющие процесс отщепления H3PO4 от молекул аденозинтрифосфата, в результате которого происходит высвобождение энергии, используемой для сокращения мышц.
ГМВ (белые)
Итак, почему же они «белые»? Всё дело в содержащихся в них капиллярах, которых значительно меньше, чем в ОМВ, отсюда и различия в цвете. По своей структуре ГМВ, как правило, в несколько раз толще, чем ОМВ. Их реакция на поступающие из мозга сигналы мгновенна, а скорость сокращения как минимум в два раза выше, чем у окислительных. Энергию гликолитические волокна получают за счет быстроусвояемых АТФ, креатинфосфатов и гликогена. Необходимо понимать, что эти энергетические источники иссякают всего за 30-60 секунд. В процессе получения энергии быстрыми волокнами не участвует кислород, благодаря чему энергия высвобождается практически мгновенно, однако ее запасы сильно ограничены. Исходя из этого, можно сделать вывод, что белые мышечные волокна подходят для высокоинтенсивных, но непродолжительных нагрузок. Однако их энергии не достаточно для выполнения многочисленных повторов и долгих, монотонных движений.
ОМВ (красные)
Они являются полной противоположностью гликолитическим по своему строению и функциям, и буквально созданы для легких и продолжительных нагрузок. Они способны накапливать, запасать энергию, а затем постепенно ее расходовать, благодаря митохондриям и миоглобину. Так что, если в ваших мышцах преобладают ОМВ — из вас вполне может получиться бегун на длинные дистанции, вам также подойдет аэробный спорт.
К сожалению, ОМВ имеют гораздо меньший потенциал в росте своих объемов и количества, чем гликолитические. Так что увеличение нашей мышечной массы в основном происходит за счет ГМВ.
Соотношение ОМВ и ГМВ в нашем организме предопределено генетикой и изменить его мы не в силах. У абсолютного большинства из нас преобладают окислительные волокна; у каждого четвертого – наоборот, процентное соотношение гликолитических волокон немного выше, чем красных. И лишь у некоторых спортсменов преобладание одних мышечных волокон над другими доходит до 85% – именно они обладают самыми высокими шансами добиться наибольших результатов в спорте.